Math, asked by Okhey, 11 hours ago

integrate (x²-x+1)/(x²+x+1) with respect to x​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{2} - x + 1}{ {x}^{2} + x + 1} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{2} + x + 1 - 2x}{ {x}^{2} + x + 1} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{2} + x + 1}{ {x}^{2} + x + 1} \: dx - \displaystyle\int\rm  \frac{2x}{ {x}^{2}  + x + 1} \: dx

\rm \:  =  \: \displaystyle\int\rm  \: dx - \displaystyle\int\rm  \frac{2x + 1 - 1}{ {x}^{2}  + x + 1} \: dx

\rm \:  =  \:x - \displaystyle\int\rm  \frac{2x + 1}{ {x}^{2}  + x + 1} \: dx  +  \displaystyle\int\rm  \frac{dx}{ {x}^{2}  + x + 1}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c \:  \: }}} \\

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {x}^{2} + x +  \dfrac{1}{4} -  \dfrac{1}{4} + 1}

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} + \dfrac{3}{4}}

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} +  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2} }

We know,

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1}  \frac{x}{a}  + c \: }} \\

So, using this identity we get

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1} \dfrac{x + \dfrac{1}{2} }{\dfrac{ \sqrt{3} }{2} }  + c

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1} \dfrac{\dfrac{2x + 1}{2} }{\dfrac{ \sqrt{3} }{2} }  + c

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\dfrac{2x + 1}{ \sqrt{3} }    + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2} -  {a}^{2}  } =  \frac{1}{2a}log\bigg | \frac{x - a}{x + a} \bigg|  + c \: }} \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } \:  =  \: log\bigg |x +  \sqrt{ {x}^{2} +  {a}^{2}  } \bigg|  + c}}  \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} -  {a}^{2} } } \:  =  \: log\bigg |x +  \sqrt{ {x}^{2} - {a}^{2}  } \bigg|  + c}}  \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2} -  {x}^{2} } } \:  =  \:  {sin}^{ - 1} \frac{x}{a}   + c}}  \\

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{2} - x + 1}{ {x}^{2} + x + 1} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{2} + x + 1 - 2x}{ {x}^{2} + x + 1} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{2} + x + 1}{ {x}^{2} + x + 1} \: dx - \displaystyle\int\rm  \frac{2x}{ {x}^{2}  + x + 1} \: dx

\rm \:  =  \: \displaystyle\int\rm  \: dx - \displaystyle\int\rm  \frac{2x + 1 - 1}{ {x}^{2}  + x + 1} \: dx

\rm \:  =  \:x - \displaystyle\int\rm  \frac{2x + 1}{ {x}^{2}  + x + 1} \: dx  +  \displaystyle\int\rm  \frac{dx}{ {x}^{2}  + x + 1}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c \:  \: }}} \\

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {x}^{2} + x +  \dfrac{1}{4} -  \dfrac{1}{4} + 1}

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} + \dfrac{3}{4}}

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \displaystyle\int\rm  \frac{dx}{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} +  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2} }

We know,

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1}  \frac{x}{a}  + c \: }} \\

So, using this identity we get

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1} \dfrac{x + \dfrac{1}{2} }{\dfrac{ \sqrt{3} }{2} }  + c

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1} \dfrac{\dfrac{2x + 1}{2} }{\dfrac{ \sqrt{3} }{2} }  + c

\rm \:  =  \: x - log | {x}^{2} + x + 1| + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\dfrac{2x + 1}{ \sqrt{3} }    + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2} -  {a}^{2}  } =  \frac{1}{2a}log\bigg | \frac{x - a}{x + a} \bigg|  + c \: }} \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } \:  =  \: log\bigg |x +  \sqrt{ {x}^{2} +  {a}^{2}  } \bigg|  + c}}  \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} -  {a}^{2} } } \:  =  \: log\bigg |x +  \sqrt{ {x}^{2} - {a}^{2}  } \bigg|  + c}}  \\

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2} -  {x}^{2} } } \:  =  \:  {sin}^{ - 1} \frac{x}{a}   + c}}  \\

Similar questions