Math, asked by priyanshijain69, 1 month ago

integrate (x³+4x²-3x-2)/(x+2) dx​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{ {x}^{3}  +  {4x}^{2}  - 3x - 2}{x + 2} \: dx

Since,

  • Degree of numerator = 3

and

  • Degree of denominator = 1

It means,

  • Degree of numerator > Degree of denominator

So,

We have to divide numerator by denominator using long division.

So,

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + 2x  - 7\:\:}}}\\ {\underline{\sf{x + 2}}}& {\sf{\: {x}^{3} + {4x}^{2} - 3x - 2 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: -  {x}^{3}  - 2{x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2{x}^{2} - 3x  -  2 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  -  2{x}^{2} - 4x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:   - 7x  -  2  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  7x + 14\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 12\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{ {x}^{3}  +  {4x}^{2}  - 3x - 2}{x + 2} \: dx

 \rm \:  =  \:  \: \displaystyle\int\sf  \bigg( {x}^{2} + 2x - 7 + \dfrac{12}{x + 2} \bigg) \: dx

 \rm \:  =  \:  \: \dfrac{ {x}^{3} }{3}  + {x}^{2} - 7x + 12 log(x + 2)  + c

Additional Information :-

\green{\boxed{ \bf \:\int  {x}^{n} \: dx = \dfrac{ {x}^{n + 1} }{n + 1} + c}}

\green{\boxed{ \bf \:\int \: kdx =kx + c}}

\green{\boxed{ \bf \:\int \: cosx \: dx =sinx + c}}

\green{\boxed{ \bf \:\int \: sinx \: dx = -  \: cosx + c}}

\green{\boxed{ \bf \:  \int \: \dfrac{1}{x} dx =  log(x) + c}}

\green{\boxed{ \bf \:  \int \: secx \: tanx \: dx =secx + c}}

\green{\boxed{ \bf \:  \int \: cosecx \: cotx \: dx = -  \: cosecx + c}}

\green{\boxed{ \bf \:  \int \:  {sec}^{2}x \:  dx = tanx+ c}}

\green{\boxed{ \bf \:  \int \:  {cosec}^{2}x \:  dx = -  \:  cotx+ c}}

\green{\boxed{ \bf \:  \int \: cotx \: dx =  log(sinx) + c}}

\green{\boxed{ \bf \:  \int \: tanx \: dx =  log(secx) + c}}

Similar questions