Math, asked by mitramar68, 10 months ago

Integrate (x⁴+x²+1)/(x²-x+1). Please solve it in detail....

Answers

Answered by jaiverma1928pb530n
2

long division will help as the integral is improper

Attachments:
Answered by Mora22
1

To find::

  \sf{\int \frac{ {x}^{4} +  {x}^{2}  + 1 }{ {x}^{2} - x +  1 }dx }

Add x² and subtract x² in numerator

 \sf{ \int \frac{ ({x}^{4} + 2 {x}^{2}  + 1) -  {x}^{2}  }{ {x}^{2} - x + 1 } dx}

=>x⁴+2x²+1=(1+x²)²

so

 \sf{ \int \frac{ {(1 +  {x}^{2}) }^{2}  -  {x}^{2} }{ {x}^{2}  - x + 1} \: dx }

we can write a²-b² as (a+b)(a-b)

 \sf{ \int \frac{(1 +  {x}^{2}  + x)(1 +  {x}^{2} - x) }{ {x}^{2} - x + 1 } dx}

 \sf{ \int(1 +  {x}^{2}  + x)dx}

 =  >  \sf{ \int{1}dx} +  \int {x}^{2} dx +  \int(x)dx

 \sf{  =  > x +  \frac{ {x}^{3} }{3} +   \frac{ {x}^{2} }{2}  }

Similar questions