Math, asked by GaneshNaik16, 3 months ago

Integrate
y/x dy/dx =
 \sqrt{1 +  {x}^{2} +  {y}^{2} +  {x }^{2}  \times  {y}^{2} }

Answers

Answered by TheValkyrie
5

Answer:

\sf \sqrt{1+y^2} =\dfrac{(\sqrt{1+x^2}) ^3}{3} +C

Step-by-step explanation:

Given:

\sf \dfrac{y}{x} \: \dfrac{dy}{dx} =\sqrt{1+x^2+y^2+x^2\:y^2}

To Find:

The solution of the given differential equation

Solution:

\sf \dfrac{y}{x} \: \dfrac{dy}{dx} =\sqrt{1+x^2+y^2+x^2\:y^2}

\sf \dfrac{y}{x} \: \dfrac{dy}{dx} =\sqrt{1+x^2+y^2(1+x^2)}

\sf \dfrac{y}{x} \: \dfrac{dy}{dx} =\sqrt{(1+x^2)\times (1+\:y^2)}

\sf \dfrac{y}{x}\: \dfrac{dy}{dx}  =\sqrt{1+x^2} \times \sqrt{1+y^2}

Making it variable separable,

\sf \dfrac{y}{\sqrt{1+y^2} } \:dy=x\times \sqrt{1+x^2} \:dx

Integrating on both sides,

\displaystyle \sf \int\limits {\dfrac{y}{\sqrt{1+y^2} } } \, dy=\int\limits x\:{\sqrt{1+x^2} } \, dx

Now let us assume that 1 + y² = t²

Differentiating on both sides we get,

2y dy = 2t dt

y dy = t dt

Also assume that 1 + x² = p²

Differentiate on both sides,

2x dx = 2p dp

x dx = p dp

Substituting in the above integral we get,

\displaystyle \sf\int\limits {\dfrac{t}{\sqrt{t} ^2} } \, dt =\int\limits {p\times \sqrt{p^2}} \, dp

\displaystyle \sf \int\limits {1} \, dt=\int\limits {p^2} \, dp

\sf t=\dfrac{p^3}{3} +C

Substitute the value of t and p,

\sf \sqrt{1+y^2} =\dfrac{(\sqrt{1+x^2}) ^3}{3} +C

This is the solution of the given differential equation.

Similar questions