Math, asked by meher43, 5 months ago

integrated it fastr ​

Attachments:

Answers

Answered by BrainlyEmpire
147

Given Integrand:-

 \displaystyle \int \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)} dx

We know that:-

 \boxed{ \boxed{ \displaystyle \int \sf \dfrac{ {ax}^{2}  + bx + c}{(x - p)(x - q)(x - r)} dx = \int \bigg( \dfrac{A}{x - p}  +  \dfrac{B}{x - q}  +  \dfrac{C}{x - r} \bigg)dx }}

Therefore,

 \implies \displaystyle  \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)} =  \dfrac{a}{x - 1}  +  \dfrac{b}{x - 2}  +  \dfrac{c}{x - 3}  \\  \\  \implies \sf \: \dfrac{x}{ \cancel{(x - 1)(x - 2)(x - 3)}} =  \dfrac{a(x - 2)(x - 3) + b(x - 1)(x - 3) + c(x - 2)(x - 1)}{ \cancel{(x - 1)(x - 2)(x -3)}}  \\  \\  \implies \sf \: x = a(x - 2)(x - 3) + b(x - 1)(x - 3) + c(x - 2)(x - 1) -  -  -  - (1)

Putting x = 1 in equation (1),

  \longrightarrow \sf \: 1 = a(1 - 2)(1 - 3) + b(1 - 1)(1 - 3) + c(1 - 2)(1- 1)  \\  \\  \longrightarrow \sf \: 1 = 2a \\  \\  \longrightarrow \sf \: a =  \dfrac{1}{2}

Putting x = 2,

  \longrightarrow \sf \: 2= a(2 - 2)(2 - 3) + b(2 - 1)(2 - 3) + c(2 - 2)(2- 1)  \\  \\  \longrightarrow \sf \: 2 =  - b \\  \\  \longrightarrow \sf \: b =  -  2

Putting x = 3,

  \longrightarrow \sf \: 3= a(3- 2)(3 - 3) + b(3 - 1)(3 - 3) + c(3 - 2)(3- 1)  \\  \\  \longrightarrow \sf \: 3 =  2c \\  \\  \longrightarrow \sf \:c =  \dfrac{3}{2}

The integrand can be rewritten as :

 \implies \displaystyle  \int \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)}dx =  \int \bigg( \dfrac{1}{2(x - 1)}   -   \dfrac{2}{x - 2}  +  \dfrac{3}{2(x - 3)}   \bigg)dx

We know that,

  \star \:  \boxed{ \displaystyle \int \sf \dfrac{dx}{x}  =  ln(x)  + c}

Thus,

 \implies  \boxed{ \boxed{\sf \:  \dfrac{1}{2}  ln(x - 1)  - 2 ln(x - 2)  +  \dfrac{3}{2}  ln(x - 3)  + c}}

__________________________________________________________________________________________________

.

.

.

• ⭐_note :- view this answer from website otherwise u will not able to see the format shown here_⭐

Similar questions