Math, asked by don4819, 1 month ago

integration 0 - pie/2 log (cos x) dx ​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(cosx)  \: dx \:

Let assume that

\rm :\longmapsto\:I_1 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(cosx)  \: dx \:  -  -  - (1)

We know,

\boxed{ \bf{ \: \displaystyle\int_0^{a}\sf  \: f(x) \: dx \:  =  \: \displaystyle\int_0^{a}\sf f(a - x) \: dx}}

So, using this property, we get

\rm :\longmapsto\:I_1 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  logcos \bigg(\dfrac{\pi}{2} - x \bigg)  \: dx \:

\rm :\longmapsto\:I_1 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(sinx)  \: dx \:  -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2I_1 \:  =  \:\displaystyle\int_0^{\dfrac{\pi}{2}}\sf  log(cosx)dx +  \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(sinx)  \: dx \:

\rm :\longmapsto\:2I_1 \:  =  \:\displaystyle\int_0^{\dfrac{\pi}{2}}\sf  \bigg( logcosx +  logsinx \bigg) \: dx

\rm :\longmapsto\:2I_1 \:  =  \:\displaystyle\int_0^{\dfrac{\pi}{2}}\sf  \bigg( log(cosx sinx) \bigg) \: dx

\red{\bigg \{ \because \:logx + logy = logxy \bigg \}}

\rm :\longmapsto\:2I_1 = \displaystyle\int_0^{\dfrac{\pi}{2}}\sf log \bigg(\dfrac{2sinxcosx}{2} \bigg)

\rm :\longmapsto\:2I_1 = \displaystyle\int_0^{\dfrac{\pi}{2}}\sf log \bigg(\dfrac{sin2x}{2} \bigg)

\rm :\longmapsto\:2I_1 = \displaystyle\int_0^{\dfrac{\pi}{2}}\sf (log sin2x  - log2)\: dx \:

\red{\bigg \{ \because \: log\dfrac{x}{y}   = logx - logy\bigg \}}

\rm :\longmapsto\:2I_1 = \displaystyle\int_0^{\dfrac{\pi}{2}}\sf log sin2x  \: dx - log2\displaystyle\int_0^{\dfrac{\pi}{2}}\sf \: dx \:

\rm :\longmapsto\:2I_1 = I_2 - log2 \bigg(x \bigg)_0^{\dfrac{\pi}{2}}\:  \:

where,

 \red{\rm :\longmapsto\:I_2 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(sin2x)  \: dx \: -  -  - (2) }

\bf :\longmapsto\:2I_1 = I_2 -\dfrac{\pi}{2} log2   -  -  -  - (3)

Now, Consider Equation (2), we have

 \red{\rm :\longmapsto\:I_2 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(sin2x)  \: dx \: }

\rm :\longmapsto\:Put \: 2x = y

\rm :\implies\:2dx = dy

\rm :\implies\:dx = \dfrac{dy}{2}

When we substitute in definite integrals, the limits also changes according to the Substitution.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf \dfrac{\pi}{2} & \sf \pi \end{array}} \\ \end{gathered}

So, on substituting all these values, we get

\rm :\longmapsto\:I_2 = \displaystyle\int_0^{\pi}\sf logsiny \: \dfrac{dy}{2}

\rm :\longmapsto\:I_2 =\dfrac{1}{2}  \displaystyle\int_0^{\pi}\sf logsiny \: dy

We know,

\boxed{ \bf{ \: \displaystyle\int_0^{a}\sf  \: f(x) \: dx \:  =  \: \displaystyle\int_0^{a}\sf f(a - x) \: dx}}

So using this property, we get

\rm :\longmapsto\:I_2 =\dfrac{1}{2}  \displaystyle\int_0^{\pi}\sf logsin(\pi - y) \: dy

\rm :\longmapsto\:I_2 =\dfrac{1}{2}  \displaystyle\int_0^{\pi}\sf logsiny \: dy

We know,

\boxed{ \bf{ \: \displaystyle\int_0^{2a}\sf f(x) dx= 2\displaystyle\int_0^{a}\sf f(x) \: dx \:  \: if \: f(2a - x) = f(x)}}

So, using this property we get

\rm :\longmapsto\:I_2 =2 \times \dfrac{1}{2}  \displaystyle\int_0^{\dfrac{\pi}{2}}\sf logsiny \: dy

\rm :\longmapsto\:I_2 = \displaystyle\int_0^{\dfrac{\pi}{2}}\sf logsiny \: dy

We know that

\boxed{ \bf{ \: \displaystyle\int_a^{b}\sf  \: f(x) \: dx \:  =  \: \displaystyle\int_a^{b}\sf  \: f(y) \: dy}}

\rm :\longmapsto\:I_2 \:  =  \: \displaystyle\int_0^{\dfrac{\pi}{2} }\sf  log(sinx)  \: dx \:

From equation (2), we concluded

\bf\implies \:I_2 = I_1 -  -  - (4)

On substituting equation (4) in equation (3), we get

\bf :\longmapsto\:2I_1 = I_1 -\dfrac{\pi}{2} log2

\bf\implies \:\:I_1 =  - \: \dfrac{\pi}{2} \:  log2

Hence,

 \purple{\boxed{ \bf{ \: \rm :\longmapsto\:\displaystyle\int_0^{\dfrac{\pi}{2} }\bf  log(cosx)  \: dx \:  =  -  \: \dfrac{\pi}{2} \: log2 \:  \:  \:  \:  \:  \: }}}

Similar questions