Math, asked by debjyoti2562, 1 year ago

integration 0 to 2 (2x^2+5x+1) as a limit of sum​

Answers

Answered by royal171gmailcom
1

Answer:

The answer is completed

Attachments:
Answered by ashishks1912
0

The value of the given integration is  \int\limits_0^2 (2x^2+5x+1)dx=\frac{52}{3}

Step-by-step explanation:

Given that integration 0 to 2 (2x^2+5x+1) as a limit of sum​

It can be written as

\int\limits_0^2 (2x^2+5x+1)dx

To find the given integration :

  • \int\limits_0^2 (2x^2+5x+1)dx
  • =(\frac{2x^{2+1}}{2+1}+\frac{5x^{1+1}}{1+1}+x+c)^2_0
  • =(\frac{2x^3}{3}+\frac{5x^2}{2}+x+c)^2_0 ( by using the formula \int x^ndx=\frac{x^{n+1}}{n+1}  and \int dx=x+c )
  • =\frac{2(2)^3}{3}+\frac{5(2)^2}{2}+2-(\frac{2(0)^3}{3}+\frac{5(0)^2}{2}+0)
  • =\frac{16}{3}+\frac{20}{2}+2-0
  • =\frac{16}{3}+10+2
  • =\frac{16}{3}+12
  • =\frac{16+12(3)}{3}
  • =\frac{16+36}{3}
  • =\frac{52}{3}

Therefore \int\limits_0^2 (2x^2+5x+1)dx=\frac{52}{3}

The value of the given integration is  \int\limits_0^2 (2x^2+5x+1)dx=\frac{52}{3}

Similar questions