Math, asked by subhranildas1986, 1 year ago

integration 0 to 2 X square + x dx as the limit of sum ​

Answers

Answered by Anonymous
5

Step-by-step explanation:

plzz see the attachment

Attachments:
Answered by BrainlyConqueror0901
6

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \int\limits_{0}^{2}(x^{2}+x)dx=\frac{14}{3}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  \int \limits_{0} ^{2}( {x}^{2}  + x)dx \\  \\ \underline \bold{To \:Find: } \\ \implies  \int \limits_{0} ^{2}( {x}^{2}  + x)dx = ?

• According to given question :

\implies y=    {x}^{2}  + x \\  \\  \implies   \frac{dy}{dx}  =  {x}^{2}  + x \\  \\  \implies dy =  ({x}^{2}  + x)dx \\  \\ \bold{Both  \: side \: integrating : } \\  \implies   \int dy =  \int( {x}^{2}  + x)dx \\  \\  \bold{Putting \: limits }\\  \implies  \int \limits_{0}^{y} dy = \int \limits_{0}^{2} ( {x}^{2}  + x)dx \\  \\  \implies y - 0 = \int \limits_{0}^{2} ( \frac{ {x}^{3} }{3}  +  \frac{ {x}^{2} }{2} )dx \\  \\  \implies y =  (\frac{ {2}^{3} }{3}  +  \frac{ {2}^{2} }{2})  -  (0) \\  \\  \implies y =  \frac{8}{3}  +  \frac{2}{1}  \\  \\  \implies y =  \frac{8 + 6}{3}  \\  \\   \bold{\implies y =  \frac{14}{3} }

Similar questions
Math, 1 year ago