Math, asked by ewpoluy12, 3 months ago

Integration 1/1+cot x dx

Answers

Answered by MysticalStar07
125

\sf\red{Answer:-}

\sf I =\dfrac{x}{2}-\dfrac{1}{2}\:log|sin\:x+cos\:x|+C

Step-by-step explanation:

Given:

\sf \dfrac{1}{1+cot\:x}

To Find:

\sf \int\limits {\dfrac{1}{1+cot\:x} } \, dx

Solution:

\sf Let\:I=\int\limits {\dfrac{1}{1+cot\:x} } \, dx

We know,

  • cot x = cos x/sin x

\sf I= \int\limits{\dfrac{1}{1+\frac{cos\:x}{sin\:x} } } \,dx

\sf = \int\limits{\dfrac{1}{\frac{sin\:x+cos\:x}{sin\:x} } } \,dx

\sf =\int\limits {\dfrac{sin\:x}{sin\:x+cos\:x} } \,dx

Now multiplying and dividing by 2 we get,

\sf =\int\limits \dfrac{2}{2} \times {\dfrac{sin\:x}{sin\:x+cos\:x} } \,dx

Taking 1/2 outside the integral,

\sf =\dfrac{1}{2} \int\limits {\dfrac{2\:sin\:x}{sin\:x+cos\:x} } \,dx

Now add and subtract cos x on the numerator,

\sf =\dfrac{1}{2} \int\limits {\dfrac{2\:sin\:x+cos\:x-cos\:x}{sin\:x+cos\:x} } \, dx

\sf =\dfrac{1}{2} \int\limits {\dfrac{\:sin\:x+cos\:x+sin\:x-cos\:x}{sin\:x+cos\:x} } \,dx

Separating the terms,

\sf =\dfrac{1}{2}\int\limits {\dfrac{sin\:x+cos\:x}{sin\:x+cos\:x} } \, dx +\dfrac{1}{2} \int\limits {\dfrac{sin\:x-cos\:x}{sin\:x+cos\:x} } \,dx

\sf = \dfrac{1}{2}\int\limits {1 } \, dx +\dfrac{1}{2} \int\limits {\dfrac{sin\:x-cos\:x}{sin\:x+cos\:x} } \, dx

We know,

\sf \int\limits {1} \, dx =x+C∫1dx=x+C

Hence,

\sf =\dfrac{1}{2}\times x +\dfrac{1}{2} \int\limits {\dfrac{sin\:x-cos\:x}{sin\:x+cos\:x} } \,dx

Let us assume,

  • t = sin x + cos x

Differentiating on both sides,

  • dt = cos x - sin x dx
  • -dt = sin x - cos x

Therefore,

\sf I =\dfrac{x}{2} +\dfrac{1}{2} \int {\dfrac{-dt}{t} }

\sf I =\dfrac{x}{2} -\dfrac{1}{2} \int {\dfrac{dt}{t} }

We know,

\sf \int\limits {\dfrac{dt}{t} } = log|t| +C∫t

Hence,

\sf I =\dfrac{x}{2}-\dfrac{1}{2}\:log|t|+C

Substitute the value of t,

\sf I =\dfrac{x}{2}-\dfrac{1}{2}\:log|sin\:x+cos\:x|+C

◕ ◕ ◕ ◕ ✔☃️

Similar questions