Math, asked by praveena5046, 1 year ago

Integration: 1/(3cosx-2sinx)^2

Answers

Answered by Swarup1998
7
\underline{\textsf{Question-}}

\textsf{Integrate:}\:\mathsf{\frac{1}{(3cosx-2sinx)^{2}}}\:\textsf{w. r. to x}

\underline{\textsf{Solution-}}

\textsf{Now,}\:\mathsf{\int \frac{dx}{(3cosx-2sinx)^{2}}}

\mathsf{=\int \frac{sec^{2}x\:dx}{(3-2tanx)^{2}}}

\textsf{Let, 3 - 2 tanx = z}

\mathsf{So,\: - 2 sec^{2}x\:dx = dz}

\mathsf{=-\frac{1}{2} \int \frac{dz}{z^{2}}}

\mathsf{=-\frac{1}{2}(-\frac{1}{z})+C}

\textsf{where C is integral constant}

\mathsf{=\frac{1}{2z}+C}

\mathsf{=\frac{1}{2(3-2tanx)}+C}

\mathsf{=\frac{1}{6-4tanx}+C}

\to \boxed{\tiny{\mathsf{\int \frac{dx}{(3cosx-2sinx)^{2}}=\frac{1}{6-4tanx}+C}}}

\underline{\textsf{Hence, solved.}}
Answered by Anonymous
0

Answer:

Step-by-step explanation:

First,we divide numerator and denominator with cos^2(x),we convert integral into sec and tan form.

We substitute tanx=t,then apply another substitution 3-2t=u.

On solving,we get

1/{2(3-2tanx)}+c,where c is arbitrary constant

Similar questions