Integration
1/a+bcosx
urgent........
Answers
『A』『n』『s』『w』『e』『r』
╔⏤⏤⏤⏤╝❀╚⏤⏤⏤⏤╗
integrate dx/(a+bcosx)
put cosx=(1-tan^2(x/2))/(1+tan^(x/2))
integrate sec^2(x/2) dx/a(1+tan^2(x/2)+b(1-tan^2(x/2))
=integrate sec^2(x/2)dx/(a+b)+(a-b)tan^2(x/2)
put tan(x/2)=t
diff w. r. to x we get
sec^2(x/2).1/2 dx=dt
=integrate 2dt/(a+b)+(a-b)t^2
=2/sqrt(a+b) arctan( sqrt(a-b)t/sqrt(a+b))
=2/sqrt(a+b) arctan(sqrt(a-b)tan(x/2)/sqrt(a+b))
Thanks & Regards
╚⏤⏤⏤⏤╗❀╔⏤⏤⏤⏤╝
♯HOPE IT HELPS YOU ❤♥♠♣
♯GO_π_FOLLOW_ME⏬⏫⏪⏩⤵⤴
Answer:
hiii
your answer is here. !
Step-by-step explanation:
=> There are three cases here.
1. |a|>|b|
=> let c=(a^2-b^2).
=> The result is then (2/c)*arctan(c*tan(x/2))/(a+b)
+C
2. |a|<|b|
=> let c=sqrt(b^2-c^2)
=> The result is then
(1/c)*ln((c*tan(x/2)+a+b)/(c*tan(x/2) -a -b)) +C
3. a=b
=> If you replace 1 +cos(x) with (sin(x/2))^2 the integral reduces to integral of
=> dx/(sin(x/2))^2.
=> This is a standard integral.
follow me !