Math, asked by Amaygowda, 3 months ago

integration
1/x^2+2x-3×dx​

Answers

Answered by amansharma264
9

EXPLANATION.

⇒ ∫dx/x² + 2x - 3.

As we know that,

If coefficient of denominator > coefficient of numerator then we apply partial fractions.

Factorizes the equation into middle term splits, we get.

⇒ x² + 2x - 3.

⇒ x² + 3x - x - 3.

⇒ x(x + 3) - 1(x + 3).

⇒ (x - 1)(x + 3).

⇒ ∫dx/(x - 1)(x + 3).

⇒ 1/(x - 1)(x + 3) = A/(x - 1) + B/(x + 3).

⇒ 1 = A(x + 3) + B(x - 1).

As we know that,

Put the value of x = 1 in equation, we get.

⇒ 1 = A(1 + 3) + B(1 - 1).

⇒ 1 = A(4) + 0.

⇒ 1 = 4A.

⇒ A = 1/4.

Put the value of x = - 3 in equation, we get.

⇒ 1 = A( - 3 + 3) + B(- 3 - 1).

⇒ 1 = 0 + B(-4).

⇒ 1 = - 4B.

⇒ B = -1/4.

Put the values in the equation, we get.

⇒ ∫dx/(x - 1)(x + 3) = ∫A/(x - 1)dx + ∫B/(x + 3)dx.

⇒ ∫dx/(x - 1)(x + 3)  = ∫1/4(x - 1)dx + ∫-1/4(x + 3)dx.

⇒ ∫dx/(x - 1)(x + 3)  = 1/4∫dx/(x - 1) - 1/4∫dx/(x + 3).

⇒ ∫dx/(x - 1)(x + 3)  = 1/4㏑(x - 1) - 1/4㏑(x + 3) + c.

⇒ ∫dx/(x - 1)(x + 3)  = 1/4[㏑(x - 1) - ㏑(x + 3)] + c.

                                                                                                                       

MORE INFORMATION.

Integration by parts.

If u and v are two functions of x, then.

∫(u v)dx = u(∫v dx) - ∫[du/dx . ∫v dx]dx.

From the first letter of the word.

I = Inverse trigonometric functions.

L = Logarithmic functions.

A = Algebraic functions.

T = Trigonometric functions.

E = Exponential functions.

We get a word = ILATE.

∴ First we arrange the functions in the order according to letters of this word and then integrste by parts.

(2) = If the integrals is of the form,

⇒ ∫eˣ[f(x) + f'(x)]dx = eˣf(x) + c.

(3) = If the integrals is of the form,

⇒ ∫[xf'(x) + f(x)]dx = x f(x) + c.

Similar questions