#integration
____________
Answers
We're asked to evaluate,
Let,
Also,
Thus,
Let,
for some constants and
Equating corresponding coefficients,
Solving these four equations we get,
Then (2) becomes,
We know that,
- for some constant
So,
So (1) will be,
Undoing we get,
Step-by-step explanation:
Answer:
{ln(x²-12+8√2)} /4 - ( 11+5√2) tan^-1{x/(√8 - 2)}
Step-by-step explanation:
first find the partial fractions
x²-4/x⁴+24x²+16 = A/x² + 12-8√2 + B/x² - 12+8√2
x² - 4 = A(x² - 12+8√2) + B(x² + 12 - 8√2 )
@ x = 12-8√2 , 2B(12-8√2) = 8-8√2 , B = -(1+5√2)
@ x = 12+8√2 , 2A(12+8√2) = 8+8√2 , A = √2 - 1
so far
I = ∫x²-4/x⁴+24x²+16 dx = ∫ A/(x² - 12+8√2) .dx + ∫B/(x² + 12 - 8√2 ) dx
∫Adx/{x² - (12-8√2) } = ∫Adx/{x² - (12-2√32) } = ∫Adx/{x² - (√8-2)² }
= A/2(√8 -2) {ln(x²-12+8√2)} = {ln(x²-12+8√2)} /4
∫Bdx/(x² + 12 - 8√2 ) dx = B ∫dx/{x² + (√8-2 )² } = B ∫dx/{x² + (√8 - 2 )² }
B/(√8 - 2 ) tan^-1{x/(√8 - 2)} = - ( 11+5√2) tan^-1{x/(√8 - 2)}
therefore
I = ∫x²-4/x⁴+24x²+16 dx = ∫ A/(x² - 12+8√2) .dx + ∫B/(x² + 12 - 8√2 ) dx
I = {ln(x²-12+8√2)} /4 - ( 11+5√2) tan^-1{x/(√8 - 2)}