Math, asked by sakshay1526, 1 year ago

Integration π/3 to 0 cosx/3+4sinx.dx

Answers

Answered by DerrickStalvey
20

Please find the attached image of solution.

Attachments:
Answered by arindambhatt987641
0

Answer:

\dfrac{1}{4}log(\dfrac{3}{3+2\sqrt{3}})

Step-by-step explanation:

We have to evaluate the integration of

\dfrac{cosx}{3+4sinx} from \dfrac{\pi}{3} to 0.

Let's assume that

y\ =\ \int^{0}_{\frac{\pi}{3}}{\dfrac{cosx}{3+4sinx}dx}           (1)

Let's assume that

     t = sinx

=>dt = cosx dx

When x = 0

=> t = 0

when x\ =\ \dfrac{\pi}{3}

=>\ t\ =\ sin\dfrac{\pi}{3}

         =\ \dfrac{\sqrt{3}}{2}

By putting these values in equation (1), we will get

      y\ =\ \int^{0}_{\frac{\sqrt{3}}{2}}\dfrac{dt}{3+4t}}

          =\ \int^0_{\frac{\sqrt{3}}{2}}\dfrac{dt}{4(t+\dfrac{3}{4})}

          =\ \dfrac{1}{4}[log{t+\dfrac{3}{4}}]^0_{\frac{\sqrt{3}}{2}}

          =\ \dfrac{1}{4}[log\dfrac{3}{4}-log(\dfrac{\sqrt{3}}{2}+\dfrac{3}{4})]

          =\ \dfrac{1}{4}[log\dfrac{3}{4}-log\dfrac{2\sqrt{3}+3}{4}]

          =\ \dfrac{1}{4}[log\dfrac{3\times 4}{4\times (2\sqrt{3}+3)}]

          =\ \dfrac{1}{4}[log\dfrac{3}{2\sqrt{3}+3}]

Hence, the integration of the given term is \dfrac{1}{4}[log\dfrac{3}{2\sqrt{3}+3}]

Similar questions