Integration as soon as possible
Attachments:
DxDebo:
okay
Answers
Answered by
1
Let, I=∫x2(xsinx+cosx)2dx,
=∫{(xsecx)(xcosx(xsinx+cosx)2)}dx.
We will use the following Rule of Integration by Parts (IBP) :
IBP : ∫uv'dx=uv−∫u'vdx.
Prior to the Integration, let us note :
ddx{1xsinx+cosx}
=−1(xsinx+cosx)2⋅ddx{(xsinx+cosx)},
=−1(xsinx+cosx)2⋅{(x⋅cosx+sinx)+(−sinx)}.
=−xcosx(xsinx+cosx)2.
⇒∫xcosx(xsinx+cosx)2dx=−1xsinx+cosx............(1).
Also, ddx(xsecx)=xsecxtanx+secx,
=x⋅1cosx⋅sinxcosx+1cosx.
⇒ddx(xsecx)=xsinx+cosxcos2x............(2).
Now, in IBP, we take,
u=xsecx,and,v'=xcosx(xsinx+cosx)2.
∴u'=xsinx+cosxcos2x,&,v=−1xsinx+cosx.
∴I=(xsecx){−1xsinx+cosx}
−∫{(xsinx+cosxcos2x)⋅(−1xsinx+cosx)}dx,
=−xcosx(xsinx+cosx)+∫sec2xdx,
=−xcosx(xsinx+cosx)+tanx,
=−xcosx(xsinx+cosx)+sinxcosx,
=−x+sinx(xsinx+cosx)cosx(xsinx+cosx),
=−x+xsin2x+sinxcosxcosx(xsinx+cosx),
=−x(1−sin2x)+sinxcosxcosx(xsinx+cosx),
=−xcos2x+sinxcosxcosx(xsinx+cosx),
=cosx(sinx−xcosx)cosx(xsinx+cosx).
⇒I=sinx−xcosxxsinx+cosx+C.
Hope it helps
=∫{(xsecx)(xcosx(xsinx+cosx)2)}dx.
We will use the following Rule of Integration by Parts (IBP) :
IBP : ∫uv'dx=uv−∫u'vdx.
Prior to the Integration, let us note :
ddx{1xsinx+cosx}
=−1(xsinx+cosx)2⋅ddx{(xsinx+cosx)},
=−1(xsinx+cosx)2⋅{(x⋅cosx+sinx)+(−sinx)}.
=−xcosx(xsinx+cosx)2.
⇒∫xcosx(xsinx+cosx)2dx=−1xsinx+cosx............(1).
Also, ddx(xsecx)=xsecxtanx+secx,
=x⋅1cosx⋅sinxcosx+1cosx.
⇒ddx(xsecx)=xsinx+cosxcos2x............(2).
Now, in IBP, we take,
u=xsecx,and,v'=xcosx(xsinx+cosx)2.
∴u'=xsinx+cosxcos2x,&,v=−1xsinx+cosx.
∴I=(xsecx){−1xsinx+cosx}
−∫{(xsinx+cosxcos2x)⋅(−1xsinx+cosx)}dx,
=−xcosx(xsinx+cosx)+∫sec2xdx,
=−xcosx(xsinx+cosx)+tanx,
=−xcosx(xsinx+cosx)+sinxcosx,
=−x+sinx(xsinx+cosx)cosx(xsinx+cosx),
=−x+xsin2x+sinxcosxcosx(xsinx+cosx),
=−x(1−sin2x)+sinxcosxcosx(xsinx+cosx),
=−xcos2x+sinxcosxcosx(xsinx+cosx),
=cosx(sinx−xcosx)cosx(xsinx+cosx).
⇒I=sinx−xcosxxsinx+cosx+C.
Hope it helps
Similar questions