Math, asked by garimamadaan7337, 1 year ago

integration by parts trigonometric substitution

Answers

Answered by Rohanrocks
0
Depending on the function we need to integrate, we substitute one of the following trigonometric expressions to simplify the integration:

For \displaystyle\sqrt{{{a}^{2}-{x}^{2}}}a2−x2​, use \displaystyle{x}={a} \sin{\theta}x=asinθ

For \displaystyle\sqrt{{{a}^{2}+{x}^{2}}}a2+x2​, use \displaystyle{x}={a} \tan{\theta}x=atanθ

For \displaystyle\sqrt{{{x}^{2}-{a}^{2}}}x2−a2​, use \displaystyle{x}={a} \sec{\theta}x=asecθ

After we use these substitutions we'll get an integral that is "do-able".

Similar questions