Math, asked by phoebelett, 7 hours ago

Integration by substitution Using the substitution u=x'2-1, what is the value of the integral of 2xsqrt(x'2-1)dx from x=1 to x=2?

Answers

Answered by varadad25
1

Answer:

\displaystyle{\boxed{\red{\sf\:\int\limits_1^2\:\left(\:2x\:\sqrt{x^2\:-\:1\:}\:\right)\:dx\:=\:3.464\:}}}

Step-by-step-explanation:

The given function is

\displaystyle{\sf\:2\:x\:\sqrt{x^2\:-\:1\:}\:}

We have to integrate this function from x = 1 to x = 2.

Let us substitute,

\displaystyle{\sf\:u\:=\:x^2\:-\:1}

Differentiating both sides w.r.t. x, we get,

\displaystyle{\sf\:\dfrac{d}{dx}\:(\:u\:)\:=\:\dfrac{d}{dx}\:(\:x^2\:-\:1\:)}

\displaystyle{\implies\sf\:\dfrac{du}{dx}\:=\:\dfrac{d}{dx}\:(\:x^2\:)\:-\:\dfrac{d}{dx}\:(\:1\:)}

\displaystyle{\implies\sf\:\dfrac{du}{dx}\:=\:2x\:-\:0}

\displaystyle{\implies\sf\:\dfrac{du}{dx}\:=\:2x}

\displaystyle{\implies\sf\:\dfrac{du}{2x}\:=\:dx}

\displaystyle{\implies\:\boxed{\blue{\sf\:dx\:=\:\dfrac{1}{2x}\:du\:}}}

Now, lower limit,

When x = 1

u = x² - 1

⇒ u = 1² - 1

⇒ u = 1 - 1

u = 0

And, upper limit,

When x = 2,

u = x² - 1

⇒ u = 2² - 1

⇒ u = 4 - 1

u = 3

Now, let

\displaystyle{\sf\:I\:=\:\int\limits_1^2\:\left(\:2x\:\sqrt{x^2\:-\:1\:}\:\right)\:dx}

After substituting u = x² - 1, we get,

\displaystyle{\sf\:I\:=\:\int\limits_0^3\:\left(\:\cancel{2x}\:\sqrt{u}\:\right)\:\dfrac{1}{\cancel{2x}}\:du}

\displaystyle{\implies\sf\:I\:=\:\int\limits_0^3\:\left(\:\sqrt{u}\:\right)\:du}

\displaystyle{\implies\sf\:I\:=\:\int\limits_0^3\:\left(\:u^{\frac{1}{2}}\:\right)\:du}

We know that,

\displaystyle{\boxed{\pink{\sf\:\int\:x^n\:=\:\dfrac{x^{n\:+\:1}}{n\:+\:1}\:}}}

\displaystyle{\implies\sf\:I\:=\:\left[\:\dfrac{u^{\frac{1}{2}\:+\:1}}{\dfrac{1}{2}\:+\:1}\:\right]_0^3}

\displaystyle{\implies\sf\:I\:=\:\left[\:\dfrac{u^{\frac{1\:+\:2}{2}}}{\dfrac{1\:+\:2}{2}}\:\right]_0^3}

\displaystyle{\implies\sf\:I\:=\:\left[\:\dfrac{u^{\frac{3}{2}}}{\dfrac{3}{2}}\:\right]_0^3}

\displaystyle{\implies\sf\:I\:=\:\left[\:\dfrac{2u^{\frac{3}{2}}}{3}\:\right]_0^3}

\displaystyle{\implies\sf\:I\:=\:\dfrac{2\:\times\:3^{\frac{3}{2}}}{3}\:-\:\dfrac{2\:\times\:0^{\frac{3}{2}}}{3}\:}

\displaystyle{\implies\sf\:I\:=\:\dfrac{2\:\times\:(\:3^{\frac{1}{2}\:)^3}}{3}\:-\:\dfrac{2\:\times\:0}{3}}

\displaystyle{\implies\sf\:I\:=\:\dfrac{2\:\times\:(\:\sqrt{3}\:)^3}{3}\:-\:\dfrac{0}{3}}

\displaystyle{\implies\sf\:I\:=\:\dfrac{2\:\times\:\cancel{5.196}}{\cancel{3}}\:-\:0}

\displaystyle{\implies\sf\:I\:=\:2\:\times\:1.732}

\displaystyle{\implies\sf\:I\:=\:3.464}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\int\limits_1^2\:\left(\:2x\:\sqrt{x^2\:-\:1\:}\:\right)\:dx\:=\:3.464\:}}}}

Similar questions