Math, asked by ujjwal5817, 3 months ago

Integration


Calculus​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: I \:  = \displaystyle\int_0^1 \tt \: {x}^{6} \sqrt{1 -  {x}^{2} } \: dx

We use here method of Substitution,

 \red{\rm :\longmapsto\:Put \: x = siny} \\ \red{\rm :\longmapsto\:dx = cosy \: dy}

☆ Now, we have to change the limits too

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf \dfrac{\pi}{2}  \end{array}} \\ \end{gathered}

☆ So, given integral can be rewritten as

\rm :\longmapsto\: I \:  = \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {sin}^{6}y\sqrt{1 -  {sin}^{2}y} \: cosy \: dy

\rm :\longmapsto\: I \:  = \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {sin}^{6}y\sqrt{{cos}^{2}y} \: cosy \: dy

\rm :\longmapsto\: I \:  = \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {sin}^{6}y \: {cos}^{2}y\:  \: dy

☆ Using Walli's Formula,

\rm :\longmapsto\:I \:  = \dfrac{(5 \times 3 \times 1)(1)}{8 \times 6 \times 4 \times 2} \times \dfrac{\pi}{2}

\bf :\longmapsto\:I \:  = \dfrac{5\pi}{256}

Additional Information :-

Walli's Formula:-

1. If n is odd

 \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {sin}^{n}x  \: dx = \dfrac{n - 1}{n} .\dfrac{n - 3}{n - 2} .\dfrac{n - 5}{n - 4} . -  -  -  \dfrac{3}{2}

2. If n is even,

 \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {sin}^{n}x  \: dx = \dfrac{n - 1}{n} .\dfrac{n - 3}{n - 2} .\dfrac{n - 5}{n - 4} . -  -  -  \dfrac{1}{2}.\dfrac{\pi}{2}

3. If n is even,

 \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {cos}^{n}x  \: dx = \dfrac{n - 1}{n} .\dfrac{n - 3}{n - 2} .\dfrac{n - 5}{n - 4} . -  -  -  \dfrac{1}{2}.\dfrac{\pi}{2}

4. If n is odd,

 \displaystyle\int_0^{\dfrac{\pi}{2}}  \tt \: {cos}^{n}x  \: dx = \dfrac{n - 1}{n} .\dfrac{n - 3}{n - 2} .\dfrac{n - 5}{n - 4} . -  -  -  \dfrac{3}{2}

Similar questions