Math, asked by karankumarchavan2, 4 months ago

integration cosx÷1+cosx..dc

Answers

Answered by amansharma264
9

EXPLANATION.

\sf \implies \displaystyle \int\bigg(\dfrac{cosx}{1 + cosx} \bigg)dx.

As we know that,

Multiply and divide both denominator and numerator by 1, we get.

\sf \implies \displaystyle \int \bigg(\dfrac{cosx + 1 - 1}{1 + cosx} \bigg)dx

\sf \implies \displaystyle \int \bigg(\dfrac{cosx + 1}{1 + cosx} \bigg)dx \ - \ \int \bigg(\dfrac{1}{1 + cosx} \bigg)dx.

\sf \implies \displaystyle \int dx \ - \ \int \bigg(\dfrac{1}{1 + cosx} \bigg)dx

As we know that,

Formula of :

⇒ cos2∅  = 2cos²∅ - 1.

⇒ cos2∅ + 1 = 2cos²∅.

As we know that,

Put the value of ∅ = x/2 in equation, we get.

⇒ cos2(x/2) + 1 = 2cos²(x/2).

⇒ cos(x) + 1 = 2cos²x/2.

Put the value in the equation, we get.

\sf \implies \displaystyle \int dx \ - \ \int \bigg(\frac{1}{2cos^{2}\dfrac{x}{2}  } \bigg)dx

\sf \implies \displaystyle \int dx \ - \ \dfrac{1}{2} \int sec^{2} \frac{x}{2} dx

\sf \implies x \ - \ \dfrac{1}{2} \bigg[\dfrac{tan\dfrac{x}{2} }{\dfrac{1}{2} } \bigg] + c.

\sf \implies x - tan\dfrac{x}{2} + c.

\sf \implies \displaystyle \int\bigg(\dfrac{cosx}{1 + cosx} \bigg)dx. = x - tan\dfrac{x}{2}  + c.

                                                                                                                         

MORE INFORMATION.

Standard integrals.

(1) = ∫0.dx = c.

(2) = ∫1.dx = x + c.

(3) = ∫k dx = kx + c, (k ∈ R).

(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).

(5) = ∫dx/x = ㏒(x) + c.

(6) = ∫eˣdx = eˣ + c.

(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.

Answered by manissaha129
0

Answer:

 →\int \frac{ \cos(x) }{1 +  \cos(x) } dx \\ =   \int \frac{ \cos(x) + 1 - 1 }{1 +  \cos(x) } dx \\ = \int \frac{1 +  \cos(x) }{1 + cos(x)} dx -  \int \frac{1}{1 +  \cos(x) } dx \\   = \int dx -  \int \frac{1}{2 { \cos}^{2}( \frac{x}{2} ) } dx \\  =  \int dx-  \frac{1}{2}  \int \sec ^{2} ( \frac{x}{2} ) dx \\  = x -  \frac{1}{2} ( \frac{ \tan( \frac{x}{2} ) }{ \frac{1}{2} } ) + C \\  = x -  \tan( \frac{x}{2} )  + C

  • x-tan(x/2)+C is the right answer.
Similar questions