Math, asked by bharatjoshi94247, 5 hours ago

integration [ (cosx+sinx) (1-1/2 sin2x) sec^2 x cosec^2 x dx]

Attachments:

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm (sinx + cosx){\bigg(1 -  \dfrac{1}{2}sin2x \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

To solve this integral, the following identities used :-

\boxed{ \sf{ \:sin2x = 2sinxcosx}}

\boxed{ \sf{ \:(x + y)( {x}^{2} +  {y}^{2} - xy) =  {x}^{3} +  {y}^{3}}}

\boxed{ \sf{ \:secx =  \frac{1}{cosx}}}

\boxed{ \sf{ \:cosecx =  \frac{1}{sinx}}}

\boxed{ \sf{ \:\displaystyle\int\rm secx \: tanx \: dx  \: =   \: secx \: + \: c }}

\boxed{ \sf{ \:\displaystyle\int\rm \: cosecx \: cotx \: dx =  -  \: cosecx + c }}

Let's solve the problem now!!

\rm :\longmapsto\:\displaystyle\int\rm (sinx + cosx){\bigg(1 -  \dfrac{1}{2}sin2x \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\rm  \:  = \:\displaystyle\int\rm (sinx + cosx){\bigg(1 -  \dfrac{1}{2}2sinxcosx \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\rm  \:  = \:\displaystyle\int\rm (sinx + cosx){\bigg(1 -  sinxcosx \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\rm  \:  = \:\displaystyle\int\rm (sinx + cosx){\bigg( {sin}^{2}x+{cos}^{2}x- sinxcosx \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\rm  \:  = \:\displaystyle\int\rm {\bigg( {sin}^{3}x+{cos}^{3}x \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\rm  \:  = \:\displaystyle\int\rm {\bigg( {sin}^{3}x+{cos}^{3}x \bigg) }  \frac{1}{ {cos}^{2}x}  \frac{1}{ {sin}^{2}x }  \: dx

\rm  \:  = \:\displaystyle\int\rm {\bigg(  \frac{ {sin}^{3} x}{ {cos}^{2}x {sin}^{2}x} +  \frac{ {cos}^{3}x}{ {cos}^{2}x {sin}^{2}x}  \bigg) }    \: dx

\rm  \:  = \:\displaystyle\int\rm {\bigg(  \frac{ {sin}^{} x}{ {cos}^{2}x } +  \frac{ {cos}^{}x}{{sin}^{2}x}  \bigg) }    \: dx

\rm \:  =  \:  \:\displaystyle\int\rm {\bigg(secx \: tanx \:  +  \: cosecx \: cotx\bigg) } \: dx

\rm \:  =  \:  \:secx \:  -  \: cosecx \:  + \:  c

Hence,

\rm :\longmapsto\:\displaystyle\int\rm (sinx + cosx){\bigg(1 -  \dfrac{1}{2}sin2x \bigg) } {sec}^{2}x {cosec}^{2}x \: dx

\bf \:  =  \:   \red{\:secx \:  -  \: cosecx} \:  + \:  c

Therefore,

  • Option (c) is correct.

Additional Information :-

\boxed{ \sf{ \:\displaystyle\int\rm  {x}^{n} dx=  \frac{ {x}^{n + 1} }{n + 1}  + c}}

\boxed{ \sf{ \:\displaystyle\int\rm cosx \: dx =  \: sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm sinx \: dx =  -  \: cosx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm tanx \: dx =  -  \:log cosx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm cotx \: dx =   \:log sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm cosecx \: dx =   \:log (cosecx - cotx) + c}}

\boxed{ \sf{ \:\displaystyle\int\rm secx \: dx =   \:log (secx + tanx) + c}}

Answered by TheMist
408

\large\underline{\red{\mathfrak{Solution\;:}}}

\longmapsto\displaystyle\int \sf (\cos x + \sin x )(1-\frac{1}{2}\sin2x )(\sec^2x cosec^2x )dx\\

\red \;\;\bigstar\;\;\boxed{\green{\sin2x= 2\sin x\cos x}}

\\\\\\\implies\sf\displaystyle\int \sf (\cos x + \sin x )(1-\frac{1}{\cancel{2}}\times\cancel{2}\sin x\cos x )(\sec^2xcosec^2x )dx\\\\\implies\displaystyle\int \sf (\cos x + \sin x )(1-\sin x\cos x )(\sec^2xcosec^2x )dx\\

\\\\\red\bigstar\;\;\boxed{\sin^2\theta+\cos^2\theta = 1}

\\\\\\\implies\displaystyle\int \sf (\cos x + \sin x )(\blue{\sin^2\theta+\cos^2\theta}-\sin x\cos x )(\sec^2xcosec^2x )dx\\

\\\red\bigstar\;\;\boxed{\sf\green{(a+b)(a^2+b^2-ab)=a^3+b^3}}

\\\\\\\implies\sf\displaystyle\int \sf \blue{( \sin^3 x + \cos^3 x)}(\sec^2x\;cosec^2x )dx\\

\\\bigstar\;\;\boxed{\sec\theta=\frac{1}{\cos\theta}}\;\;\;\;\;\;\;\;\;\;\;\bigstar\;\;\boxed{cosec\theta=\frac{1}{\sin\theta}}

\\\\\\\implies\sf\displaystyle\int \sf ( \sin^3 x + \cos^3 x)(\frac{1}{\cos^2x}\frac{1}{\sin^2x})dx\\\\\implies\sf\displaystyle\int \sf ( \sin^3 x )(\frac{1}{\cos^2x}\frac{1}{\sin^2x})+ (\cos^3 x)(\frac{1}{\cos^2x}\frac{1}{\sin^2x})dx\\\\\implies\sf\displaystyle\int \sf(\frac{\sin x}{\cos^2x})+(\frac{\cos x}{\sin^2x})dx\\

We can solve from here in 2 ways.

  • 1st method :

\\\\\\\implies\sf\displaystyle\int \sf(\frac{\sin x}{\cos x}).\frac{1}{\cos x}+(\frac{\cos x}{\sin x}).\frac{1}{\sin x}dx\\

\\\\\bigstar\;\;\boxed{\tan\theta=\frac{\sin\theta}{\cos\theta}}\;\;\;\;\;\;\;\;\;\;\;\bigstar\;\;\boxed{\cot\theta=\frac{\cos\theta}{\sin\theta}}

\bigstar\;\;\boxed{\sec\theta=\frac{1}{\cos\theta}}\;\;\;\;\;\;\;\;\;\;\;\bigstar\;\;\boxed{cosec\theta=\frac{1}{\sin\theta}}

\\\\\\\implies\sf\displaystyle\int \sf\tan x.\sec x + \cot x.cosec x.dx\\\\\implies\sf\displaystyle\int \sf\tan x.\sec x + \displaystyle\int\cot x.cosec x.dx\\

\bigstar\;\dfrac{d}{dx}\sec x =\tan x.\sec x \\\\\\ \sf\bigstar\;\dfrac{d}{dx}(-cosec x )=\cot x.cosec x

so,

\implies \sf \sec x - cosec x + c

  • Method 2:

\\\\\implies\sf\displaystyle\int \sf(\frac{\sin x}{\cos^2x})+\displaystyle\int(\frac{\cos x}{\sin^2x})dx\\

\\\\\\\implies\sf\displaystyle\int \sf(\frac{-d(\cos x)}{\cos^2x})+\displaystyle\int(\frac{d(\sin x)}{\sin^2x})dx\\\\\implies\sf\displaystyle-\int {\cos x}^{-2}.d(\cos x)+\displaystyle\int{\sin^x}^{-2}.d(\sin x)dx\\\\\implies\sf\displaystyle-\dfrac{{\cos x}^{-2+1}}{-2+1}+\dfrac{{\sin x}^{-2+1}}{-2+1}+c\\\\\implies\sf\displaystyle-\dfrac{{\cos x}^{-1}}{-1}+\dfrac{{\cos x}^{-1}}{-1}+c\\\\\implies\sf\displaystyle \sf\sec x - cosec x+c\\\\\implies\sf\displaystyle \sf\purple{ - cosec x +\sec x+ c}

Therefore,

\displaystyle\int \sf (\cos x + \sin x )(1-\frac{1}{2}\sin2x )(\sec^2xcosec^2x )dx =- cosec x + \sec x + c

  • Option c is correct answer.  

Note : Swipe left to right to see full answer.

Similar questions