Math, asked by kiara9514, 9 months ago

integration✌️


don't post irrelevant answers

Attachments:

Answers

Answered by shadowsabers03
11

Given,

\displaystyle\longrightarrow I=\int\dfrac{x^2-1}{x^4-1}\ dx

Factorising the denominator,

\displaystyle\longrightarrow I=\int\dfrac{x^2-1}{(x^2-1)(x^2+1)}\ dx

Cancelling like terms,

\displaystyle\longrightarrow I=\int\dfrac{1}{x^2+1}\ dx

\displaystyle\longrightarrow\underline{\underline{I=\tan^{-1}x+C}}

________________________________

Given,

\displaystyle\longrightarrow I=\int\dfrac{x^2+1}{x^4+1}\ dx}

Factoring the denominator,

\displaystyle\longrightarrow I=\int\dfrac{x^2+1}{x^4+2x^2+1-2x^2}\ dx}

\displaystyle\longrightarrow I=\int\dfrac{x^2+1}{(x^2+1)^2-(x\sqrt2)^2}\ dx}

\displaystyle\longrightarrow I=\int\dfrac{x^2+1}{(x^2+x\sqrt2+1)(x^2-x\sqrt2+1)}\ dx}

Multiplying and dividing by 2,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{2x^2+2}{(x^2+x\sqrt2+1)(x^2-x\sqrt2+1)}\ dx}

Adding and subtracting x\sqrt2 in the numerator,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{2x^2+x\sqrt2-x\sqrt2+2}{(x^2+x\sqrt2+1)(x^2-x\sqrt2+1)}\ dx}

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{(x^2-x\sqrt2+1)+(x^2+x\sqrt2+1)}{(x^2+x\sqrt2+1)(x^2-x\sqrt2+1)}\ dx}

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\left(\dfrac{1}{x^2+x\sqrt2+1}+\dfrac{1}{x^2-x\sqrt2+1}\right)\ dx}

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{1}{x^2+x\sqrt2+1}\ dx+\dfrac{1}{2}\int\dfrac{1}{x^2-x\sqrt2+1}\ dx}\quad\quad\dots(1)

Now let us evaluate each the integral.

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\int\dfrac{1}{x^2\pm x\sqrt2+\frac{1}{2}+\frac{1}{2}}\ dx

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\int\dfrac{1}{\left(x\pm\frac{1}{\sqrt2}\right)^2+\frac{1}{2}}\ dx

Taking \dfrac{1}{2} common from denominator,

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\int\dfrac{1}{\frac{1}{2}\left(x\sqrt2\pm1\right)^2+\frac{1}{2}}\ dx

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=2\int\dfrac{1}{\left(x\sqrt2\pm1\right)^2+1}\ dx

Substitute,

\longrightarrow u=x\sqrt2\pm1

\longrightarrow dx=\dfrac{1}{\sqrt2}\ du

Then,

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\sqrt2\int\dfrac{1}{u^2+1}\ du

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\sqrt2\tan^{-1}u

\displaystyle\longrightarrow \int\dfrac{1}{x^2\pm x\sqrt2+1}\ dx=\sqrt2\tan^{-1}(x\sqrt2\pm1)

Thus (1) becomes,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{\sqrt2}\tan^{-1}\left(x\sqrt2+1\right)+\dfrac{1}{\sqrt2}\tan^{-1}\left(x\sqrt2-1\right)+C}}

Answered by ItzShruti14
1

Answer:

hlo Kiara kaha he yar tu lu.do pe aa na plz reply tak nahi kiya reply kr

Similar questions