Math, asked by priyabhagat1917, 1 month ago

integration dx/cos^2x+cot^2x

Answers

Answered by shadowsabers03
7

We're asked to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x+\cot^2x}

Since \cot x=\dfrac{\cos x}{\sin x},

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x+\dfrac{\cos^2x}{\sin^2x}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x\left(1+\dfrac{1}{\sin^2x}\right)}

\displaystyle\longrightarrow I=\int\dfrac{\sec^2x\ dx}{\left(1+\dfrac{1}{\sin^2x}\right)}

\displaystyle\longrightarrow I=\int\dfrac{\sin^2x}{1+\sin^2x}\cdot\sec^2x\ dx

Dividing both numerator and denominator of \dfrac{\sin^2x}{1+\sin^2x} by \cos^2x,

\displaystyle\longrightarrow I=\int\dfrac{\left(\dfrac{\sin^2x}{\cos^2x}\right)}{\left(\dfrac{1+\sin^2x}{\cos^2x}\right)}\cdot\sec^2x\ dx

\displaystyle\longrightarrow I=\int\dfrac{\tan^2x}{\sec^2x+\tan^2x}\cdot\sec^2x\ dx

Since \sec^2x=1+\tan^2x,

\displaystyle\longrightarrow I=\int\dfrac{\tan^2x}{1+2\tan^2x}\cdot\sec^2x\ dx\quad\quad\dots(1)

Substitute,

\longrightarrow u=\tan x

\longrightarrow du=\sec^2x\ dx

Then,

\displaystyle\longrightarrow I=\int\dfrac{u^2}{1+2u^2}\ du

Multiplying and dividing by 2,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{2u^2}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{1+2u^2-1}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\left(1-\dfrac{1}{1+2u^2}\right)\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int du-\dfrac{1}{2}\int\dfrac{1}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2}\int\dfrac{1}{1^2+\left(u\sqrt2\right)^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2}\cdot\dfrac{1}{\sqrt2}\,\tan^{-1}\left(u\sqrt2\right)+C

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2\sqrt2}\,\tan^{-1}\left(u\sqrt2\right)+C

Undoing substitution u=\tan x,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{2}\tan x-\dfrac{1}{2\sqrt2}\tan^{-1}\left(\sqrt2\,\tan x\right)+C}}

Answered by Anonymous
2

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

We're asked to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x+\cot^2x}

Since \cot x=\dfrac{\cos x}{\sin x},

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x+\dfrac{\cos^2x}{\sin^2x}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\cos^2x\left(1+\dfrac{1}{\sin^2x}\right)}

\displaystyle\longrightarrow I=\int\dfrac{\sec^2x\ dx}{\left(1+\dfrac{1}{\sin^2x}\right)}

\displaystyle\longrightarrow I=\int\dfrac{\sin^2x}{1+\sin^2x}\cdot\sec^2x\ dx

Dividing both numerator and denominator of \dfrac{\sin^2x}{1+\sin^2x} by \cos^2x,

\displaystyle\longrightarrow I=\int\dfrac{\left(\dfrac{\sin^2x}{\cos^2x}\right)}{\left(\dfrac{1+\sin^2x}{\cos^2x}\right)}\cdot\sec^2x\ dx

\displaystyle\longrightarrow I=\int\dfrac{\tan^2x}{\sec^2x+\tan^2x}\cdot\sec^2x\ dx

Since \sec^2x=1+\tan^2x,

\displaystyle\longrightarrow I=\int\dfrac{\tan^2x}{1+2\tan^2x}\cdot\sec^2x\ dx\quad\quad\dots(1)

Substitute,

\longrightarrow u=\tan x

\longrightarrow du=\sec^2x\ dx

Then,

\displaystyle\longrightarrow I=\int\dfrac{u^2}{1+2u^2}\ du

Multiplying and dividing by 2,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{2u^2}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{1+2u^2-1}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\left(1-\dfrac{1}{1+2u^2}\right)\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int du-\dfrac{1}{2}\int\dfrac{1}{1+2u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2}\int\dfrac{1}{1^2+\left(u\sqrt2\right)^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2}\cdot\dfrac{1}{\sqrt2}\,\tan^{-1}\left(u\sqrt2\right)+C

\displaystyle\longrightarrow I=\dfrac{1}{2}\,u-\dfrac{1}{2\sqrt2}\,\tan^{-1}\left(u\sqrt2\right)+C

Undoing substitution u=\tan x,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{2}\tan x-\dfrac{1}{2\sqrt2}\tan^{-1}\left(\sqrt2\,\tan x\right)+C}}

Similar questions