Math, asked by asmitasingh9594, 2 months ago

integration dx/(sinx +cosx)​

Answers

Answered by Asterinn
40

 \rm \implies \displaystyle \int \rm  \frac{dx}{sin \: x + cos \: x}

\rm \implies \displaystyle \int \rm  \frac{dx}{ \dfrac{2 \: tan \:  \frac{x}{2} }{1 +  {tan}^{2}\frac{x}{2} } +  \dfrac{1 -  {tan}^{2} \frac{x}{2}}{1 +  {tan}^{2}\frac{x}{2}} }

\rm \implies \displaystyle \int \rm  \frac{dx}{ \dfrac{2 \: tan \:  \frac{x}{2} +  1 -  {tan}^{2} \frac{x}{2}}{1 +  {tan}^{2}\frac{x}{2}  } }

\rm \implies \displaystyle \int \rm  \dfrac{1 +  {tan}^{2}\frac{x}{2} \: }{ {2 \: tan \:  \frac{x}{2} +  1 -  {tan}^{2} \frac{x}{2}} } \:  dx

\rm \implies \displaystyle \int \rm  \dfrac{ {sec}^{2}\frac{x}{2} \: }{ {2 \: tan \:  \frac{x}{2} +  1 -  {tan}^{2} \frac{x}{2}} } \:  dx

\rm \implies \displaystyle  - \int \rm  \dfrac{ {sec}^{2}\frac{x}{2} \: }{ {  {tan}^{2} \frac{x}{2}  - 2 \: tan \:  \frac{x}{2}  -   1 } } \:  dx

 \rm \:  \: let \:  \: {tan}  \frac{x}{2} = m \\  \\   \rm \:  \dfrac{1}{2}  \times {sec}^{2} \frac{x}{2} \: dx = dm \\  \\   \rm \:  {sec}^{2} \frac{x}{2} \: dx =2 \: d m

\rm \implies \displaystyle  - \int \rm  \dfrac{ 2 \: dm}{ {  {m}^{2}   - 2 m  -   1 } }

\rm \implies \displaystyle  - \int \rm  \dfrac{ 2 \: dm}{ {  {m}^{2}   - 2 m  + 1 - 1 -   1 } }

\rm \implies \displaystyle  - \int \rm  \dfrac{ 2 \: dm}{ {  {(m - 1)}^{2}   -  2} }  \\  \\ \rm \implies \displaystyle  - 2\int \rm  \dfrac{  \: dm}{ {  {(m - 1)}^{2}   -   { (\sqrt{2} )}^{2} } }

\rm \implies  \rm - 2 \times  \dfrac{1}{2 \sqrt{2} }  \times log \bigg| \dfrac{m - 1 -  \sqrt{2} }{m - 1  + \sqrt{2}} \bigg| + c

Now , put m = tan (x/2)

\rm \implies  \rm  \dfrac{ - 1}{ \sqrt{2} }  \times log \bigg| \dfrac{tan \frac{x}{2}  - 1 -  \sqrt{2} }{tan \frac{x}{2} - 1  + \sqrt{2}} \bigg| + c

\rm \implies  \rm  \dfrac{ - 1}{ \sqrt{2} }  \:\:log \bigg| \dfrac{tan \frac{x}{2}  - 1 -  \sqrt{2} }{tan \frac{x}{2} - 1  + \sqrt{2}} \bigg| + c


Atαrαh: Amazing :D
Asterinn: Thankyou! ( ╹▽╹ )
Answered by mathdude500
30

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:\:\boxed{\pink{\bf\:sinx \: cosy + siny \: cosx = sin(x + y)}}

(2).\: \boxed{ \purple{\bf  \: \int cosecx \: dx \:  =  log(tan\dfrac{x}{2}) + c }}

\large\underline\purple{\bold{Solution :-  }}

  \bf \longmapsto \:  \bf \:\int \dfrac{dx}{sinx + cosx}

Now,

  • Multiply and divide denominator by √(2), we get

  \bf \longmapsto \:  \bf \:\dfrac{1}{ \sqrt{2} } \int \dfrac{dx}{\dfrac{1}{ \sqrt{2}} sinx + \dfrac{1}{ \sqrt{2} } cosx}

 \bf \longmapsto \:  \bf \:\dfrac{1}{ \sqrt{2} } \int \dfrac{dx}{sinx \: cos\dfrac{\pi}{4} + cosx \: sin\dfrac{\pi}{4}  }

 \bf \longmapsto \:  \bf \:\dfrac{1}{ \sqrt{2} } \int \dfrac{dx}{sin \bigg(x + \dfrac{\pi}{4}  \bigg)}

 \bf \longmapsto \:  \bf \:\dfrac{1}{ \sqrt{2} } \int cosec\bigg( x + \dfrac{\pi}{4} \bigg)dx

 \bf \longmapsto \:  \bf \:\dfrac{1}{ \sqrt{2} }  log \bigg \{tan\bigg( \dfrac{\pi}{8}  + \dfrac{x}{2} \bigg) \bigg \} + c

Similar questions