integration
e^x(1 – cotx + cosec²x)dx
Answers
Answered by
7
EXPLANATION.
⇒ ∫eˣ(1 - cot(x) + cosec²x)dx.
As we know that,
⇒ ∫eˣ[f(x) + f'(x)]dx = eˣf(x) + c.
Differentiate (1 - cot(x)) w.r.t x, we get.
⇒ - (-cosec²x)dx = dt.
⇒ cosec²x dx = dt.
⇒ ∫eˣ(1 - cot(x) + cosec²x)dx. = eˣ(1 - cot(x)) + c.
MORE INFORMATION.
Standard integrals.
(1) = ∫0.dx = c.
(2) = ∫1.dx = x + c.
(3) = ∫k dx = kx + c, ( k ∈ R).
(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).
(5) = ∫dx/x = ㏒(x) + c.
(6) = ∫eˣdx = eˣ + c.
(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.
Similar questions