Math, asked by senguptasayanika816, 3 months ago

integration
e^-xcos(e^-x)​

Answers

Answered by Anonymous
14

Given Integrand,

 \displaystyle \sf \int  {e}^{ - x} cos( {e}^{ - x} )dx

Let u = 1/e^x.

Differentiating both sides w.r.t x,

 \implies \sf  \dfrac{du}{dx}  =  -  {e}^{ - x}  \\  \\  \implies \sf \: dx = -   \dfrac{du}{ {e}^{ - x} }

Now,

 \longrightarrow \displaystyle \sf  - \int  {e}^{ - x} cos(u) \dfrac{du}{ {e}^{ - x} }  \\  \\ \longrightarrow \displaystyle \sf  - \int cos(u)du \\  \\ \longrightarrow \displaystyle \sf  - sin(u) + c \\  \\ \longrightarrow \displaystyle \sf  - sin( {e}^{ - x} ) + c

Thus,

 \boxed{ \boxed{ \displaystyle \sf \int  {e}^{ - x} cos( {e}^{ - x} )dx =  - sin( {e}^{ - x} ) + c}}


Asterinn: Great !
Anonymous: Thank you!
RockingStarPratheek: Awesome !
Answered by Anonymous
6

Solution

Given :-

 \tt \implies \int  {e}^{ - x} cos( {e}^{ - x})dx \\

Using Substitution Method

so, Let

 \tt \implies \:   {e}^{ - x}  = t

Now Differentiate Both the side with Respect to x , We get

 \tt \implies \:  \dfrac{d( {e}^{ - x}) }{dx}  =  \dfrac{dt}{dx}

 \tt \implies \:  - e ^{ - x}  =  \dfrac{dt}{dx}

 \tt \implies \: -  (e ^{ - x} ) dx = dt

\tt \implies \:  (e ^{ - x} ) dx =  - dt

Now we can write as

 \tt \implies \int  {e}^{ - x} cos( {e}^{ - x})dx \\

 \tt \implies \:   \int   - cos(t)dt \\

\tt \implies \:   -  \int   cos(t)dt \\

  \tt\implies  - sin(t) + c

Now put the value of t , we get

\tt\implies  - sin({e}^{ - x}) + c

Answer

\tt\implies  - sin({e}^{ - x}) + c


RockingStarPratheek: Splendid !
Similar questions