Math, asked by kaushik05, 10 months ago

Integration

Evaluate :

 \int \limits_ { -  \frac{1}{ \sqrt{2} } }^{ \frac{1}{ \sqrt{2} } }  \frac{ {x}^{8} }{1 -  {x}^{4} }  \times [ { \sin}^{ - 1} (1 - 2 {x}^{2}  +  { \cos}^{ - 1} (2x \sqrt{1 -  {x}^{2} } ]dx \\

Answers

Answered by Anonymous
108

Question :

Integrate

 \int \limits_ { - \frac{1}{ \sqrt{2} } }^{ \frac{1}{ \sqrt{2} } } \frac{ {x}^{8} }{1 - {x}^{4} } \times [ { \sin}^{ - 1} (1 - 2 {x}^{2}) + { \cos}^{ - 1} (2x \sqrt{1 - {x}^{2} }) ]dx \\

Formula's used :

1)sin{}^{-1}x+cos{}^{-1}x=\frac{\pi}{2} , x∈ [ -1,1]

2)tan{}^{-1}x+cot{}^{-1}x=\frac{\pi}{2} , x∈R

3)sec{}^{-1}x+cosec{}^{-1}x=\frac{\pi}{2} , x ∈(-∞,-1)⋃ (1,∞)

4)2 \sin {}^{ - 1} (x)  =  \sin {}^{ - 1} (2x \sqrt{1 - x {}^{2} } )

5)2 \cos {}^{ - 1} (x)  =  \cos {}^{ - 1} (2x{}^{2}-1 )

Solution :

 \int \limits_ { - \frac{1}{ \sqrt{2} } }^{ \frac{1}{ \sqrt{2} } } \frac{ {x}^{8} }{1 - {x}^{4} } \times [ { \sin}^{ - 1} (1 - 2 {x}^{2}) + { \cos}^{ - 1} (2x \sqrt{1 - {x}^{2} } )]dx \\

=\sf\:\pi [\frac{1}{2}tan{}^{-1} (\frac{1}{\sqrt{2}})+\dfrac{1}{4}\log(\dfrac{\sqrt{2}+1}{\sqrt{2}-1}-\dfrac{21}{20\sqrt{2}}]

Refer to the attachment.

Attachments:
Answered by Anonymous
2

\huge{\bigstar{\mathfrak{\purple{answer}}}}

Refer to the attachment

\huge{\mathfrak{\orange{hope\; it\; helps}}}

Attachments:
Similar questions