integration factor following linear differential equation
DY + y cot x- sin x
dx
Answers
Answered by
0
Answer:
Comparing the given equation with first order differential equation,
dy
dx
+Py=Q(x), we get, P=cotxandQ(x)=2cosx
So, Integrating factor (I.F)=e∫cotxdx
I.F.=eln|sinx|=sinx
we know, solution of differential equation,
y(I.F.)=∫Q(I.F.)dx
∴Our solution will be,
ysinx=∫sinx(2cosx)dx
⇒ysinx=∫sin2xdx
⇒ysinx=-
cos(2x)
2
+c
At y=0andx=
π
2
, equation becomes
0=-
cosπ
2
+c⇒c=-
1
2
So, solution will be,
ysinx=-
cos2x
2
-
1
2
⇒2ysinx+cos2x+1=0
Step-by-step explanation:
hope it will help you
Similar questions