Math, asked by djahnavi9704, 10 months ago

integration for x power -5+x power-7+2​

Answers

Answered by BendingReality
4

Answer:

\displaystyle \longrightarrow2x-\frac{1}{4x^{4}} -\frac{1}{6x^{6}} +C \\

Step-by-step explanation:

Let :

\displaystyle \text{I}=\int\limits{(x^{-5}+x^{-7}+2}) \, dx \\ \\

\displaystyle \longrightarrow \text{I}=\int\limits{x^{-5}} \ dx+\int\limits{x^{-7}} \ dx+\int\limits{2} \, dx \\ \\

We have formula :

\displaystyle \int\limits{x^n} \, dx =\frac{x^{n+1}}{n+1} +C \\ \\

\displaystyle \longrightarrow \text{I}=\frac{x^{-5+1}}{-5+1} +\frac{x^{-7+1}}{-7+1} +2x+C\\ \\

\displaystyle \longrightarrow \text{I}=\frac{x^{-4}}{-4} +\frac{x^{-6}}{-6} +2x+C \\ \\

\displaystyle \longrightarrow \text{I}=-\frac{x^{-4}}{4} -\frac{x^{-6}}{6} +2x+C \\ \\

\displaystyle \longrightarrow \text{I}=2x-\frac{1}{4x^{4}} -\frac{1}{6x^{6}} +C \\ \\

Hence we get required answer!

Answered by HeartCrusher
3

Answer:

\displaystyle \longrightarrow2x-\frac{1}{4x^{4}} -\frac{1}{6x^{6}} +C \\

Step-by-step explanation:

Let :

\displaystyle \text{I}=\int\limits{(x^{-5}+x^{-7}+2}) \, dx \\ \\

\displaystyle \longrightarrow \text{I}=\int\limits{x^{-5}} \ dx+\int\limits{x^{-7}} \ dx+\int\limits{2} \, dx \\ \\

We have formula :

\displaystyle \int\limits{x^n} \, dx =\frac{x^{n+1}}{n+1} +C \\ \\

\displaystyle \longrightarrow \text{I}=\frac{x^{-5+1}}{-5+1} +\frac{x^{-7+1}}{-7+1} +2x+C\\ \\

\displaystyle \longrightarrow \text{I}=\frac{x^{-4}}{-4} +\frac{x^{-6}}{-6} +2x+C \\ \\

\displaystyle \longrightarrow \text{I}=-\frac{x^{-4}}{4} -\frac{x^{-6}}{6} +2x+C \\ \\

\displaystyle \longrightarrow \text{I}=2x-\frac{1}{4x^{4}} -\frac{1}{6x^{6}} +C \\ \\

And We Got The Required Answer.

Similar questions