Math, asked by davidsworld999, 2 months ago

integration from -π to π x-xsquare dx​

Answers

Answered by Anonymous
3

Given

 \to \sf \int_{ - \pi}^{ \pi}(x -  {x}^{2})dx  \\

Now we can use this property

  \sf \to\int(ax  \pm bx)dx =   \int(ax)dx \pm  \int(bx)dx \\

So,

  \to\sf \int_{ - \pi}^{ \pi}  (x)dx - \int_{ - \pi}^{  \pi} ( {x}^{2})dx  \\

We Know that

  \sf \to\int ({x}^{n})dx  =  \frac{ {x}^{n + 1} }{n + 1}  \\

By using this We get

 \sf \to \bigg[ \dfrac{x {}^{1 + 1} }{1 + 1}  \bigg]_{ - \pi}^{ \pi}  -  \bigg[ \dfrac{x {}^{2 + 1} }{2 + 1}  \bigg]_{ - \pi}^{ \pi}

 \sf \to \bigg[ \dfrac{x {}^{2} }{2}  \bigg]_{ - \pi}^{ \pi}  -  \bigg[ \dfrac{x {}^{3} }{3}  \bigg]_{ - \pi}^{ \pi}

\sf \to  \dfrac{1}{2} \bigg[ {x {}^{2} }{}  \bigg]_{ - \pi}^{ \pi}  -   \dfrac{1}{3} \bigg[ {x {}^{3} }{}  \bigg]_{ - \pi}^{\pi}

  \sf  \to\dfrac{1}{2} [(\pi) {}^{2}  - ( - \pi) {}^{2} ] -  \dfrac{1}{3} [(\pi) {}^{3}  - ( - \pi) {}^{3}  ]

  \sf  \to\dfrac{1}{2} [\pi^{2}  -  \pi^{2} ] -  \dfrac{1}{3} [\pi^{3}   + \pi{}^{3}  ]

  \sf  \to\dfrac{1}{2} [0] -  \dfrac{1}{3} [ 2\pi{}^{3}  ]

 \sf  \to -   \dfrac{1}{3} [ 2\pi{}^{3}  ]

Answer

 \sf  \to -   \dfrac{1}{3} [ 2\pi{}^{3}  ]

Similar questions