Math, asked by Anonymous, 1 year ago

◆ Integration ◆

Integrate ( w.r.t. x ) -
 \sqrt{ {e}^{x}  - 1}  \: .dx

Answers

Answered by Yuichiro13
4
Hey Starry :p

 \int\limits  \sqrt{e^x - 1}  dx <--- Question √√

Substitute \ e^x = u \ \ -\ \textgreater \  du = e^xdx

Now,
  \int\limits {  \frac{\sqrt{u-1}}{u}  }  du

Again substitute s = √(u-1) ;
-> [tex]2 \int\limits { \frac{s^2}{s^2+1}} ds \\ \\ = 2\int\limits {(1 - \frac{1}{s^2 + 1}) } dx \\ \\ = 2s - 2tan^{-1}s + c[/tex]

=> The required integral is :->
 --> 2 \sqrt{e^x - 1} - 2tan^{-1}(\sqrt{e^x - 1}) + c

Yuichiro13: Plz ignore that Vector ::joy::
Anonymous: Can't see any vector o_O
Anonymous: Who's Starry ??!!!=_=
Yuichiro13: =_= Hehe
Yuichiro13: My staaaarrrrrryyyyyyyyyyyyy
Anonymous: ≠_≠
Answered by Anonymous
2
this is Ur required result in attachment
Attachments:

Anonymous: ur wlcm rstar
Similar questions