Math, asked by Rajshuklakld, 10 months ago

Integration it(jee Advance 2013)​

Attachments:

Answers

Answered by BrainlyPopularman
18

Question :

 \\  { \bold{Solve: \int \frac{ \cos(x).dx }{( { \sin(x) )}^{3}   \times  {(1 + ( \sin(x) ) {}^{6}) }^{ \frac{2}{3} } } }} \\

ANSWER :

 \\ \implies { \bold{I =  \int \frac{ \cos(x).dx }{( { \sin(x) )}^{3}   \times  {(1 + ( \sin(x) ) {}^{6}) }^{ \frac{2}{3} } } }} \\

• Let's use substitution method –

 \\   { \huge{.}} \:  \:  \: { \bold{put \:  \:  \sin(x)   = t \:  - }} \\

• Differentiate with respect to 'x'

 \\    \:  \implies  { \bold{  \cos(x)   \frac{dx}{dt}  = 1 \:  }} \\

 \\    \:  \implies  { \bold{  \cos(x).  dx  = dt \:  }} \\

• So that –

 \\ \implies { \bold{I =  \int \frac{ dt }{({t )}^{3}   \times  { [1 + (t ) ^{6}]  }^{ \frac{2}{3} } } }} \\

• We should write this as –

 \\ \implies { \bold{I =  \int \frac{ dt }{({t )}^{3}   \times( {t}^{6} ) {}^{ \frac{2}{3} }  \times   { [1 + (t ) ^{ - 6}]  }^{ \frac{2}{3} } } }} \\

 \\  \implies { \bold{I =  \int \frac{ dt }{({t )}^{3}   \times( {t}^{4} )  \times   { [1 + (t ) ^{ - 6}]  }^{ \frac{2}{3} } } }} \\

 \\  \implies { \bold{I =  \int \frac{ dt }{({t )}^{7}   \times  { [1 + (t ) ^{ - 6}]  }^{ \frac{2}{3} } } }} \\

 \\   \:  \: { \huge{. }}\:  \:  \:  { \bold{ Again \:  \: put  \:  \: (1 +  {t}^{ - 6}  ) = p \:  - }} \\

• Now Differentiate with respect to 't'

 \\   \implies { \bold{  - 6 {t}^{ - 7}. \frac{dt}{dp}   = 1 \:   }} \\

 \\   \implies { \bold{   \dfrac{dt}{ {t}^{7} }   =  \frac{dp}{ - 6}  \:   }} \\

• So that –

 \\  \implies { \bold{I =  \int \frac{ dp }{( - 6)  \times  { (p)}^{ \frac{2}{3} } } }} \\

 \\  \implies { \bold{I =  \int \frac{{ (p)}^{ -  \frac{2}{3} } .dp }{( - 6)  } }} \\

 \\  \implies { \bold{I =   - \frac{1}{6}  \int { (p)}^{ -  \frac{2}{3} } .dp } } \\

 \\  \implies { \bold{I =   - \frac{1}{6}    [ {  \dfrac{ {p}^{ -  \frac{2}{3}  + 1} }{ -  \frac{2}{3} + 1 }  ]  + c}}} \\

 \\  \implies { \bold{I =   - \frac{1}{6}    [ {  \dfrac{ {p}^{  \frac{1}{3}} }{   \frac{1}{3}  }  ]  + c}}} \\

 \\  \implies { \bold{I =   - \frac{3}{6}    ({  { {p}^{  \frac{1}{3}} }  ) + c}}} \\

 \\  \implies { \bold{I =   - \frac{1}{2}    ({  { {p}^{  \frac{1}{3}} }  ) + c}}} \\

• Now replace 'p'

 \\  \implies \large { \pink{ \boxed{ \bold{I =   - \frac{1}{2}    {  { {[1 +  {( \sin(x)) }^{ - 6} ]}^{  \frac{1}{3}} } + c}}}}} \\

 \\ \rule{220}{2} \\

USED FORMULA :–

 \\  \:   { \blue { \bold{(1) \:  \:  \dfrac{d( \sin(x) )}{dx}  =  \cos(x) }}} \\

 \\  \:   { \blue { \bold{(2) \:  \:  \dfrac{d( x )}{dx}  =  1 }}} \\

 \\  \:   { \blue{ \bold{(3) \:  \:  \dfrac{d( x  {}^{n} )}{dx}  =  n {x}^{n - 1}  }}} \\

 \\  \:   { \blue{ \bold{(4) \:  \:  \int {x}^{n} .dx =   \dfrac{ {x}^{n + 1} }{n + 1}   }}} \\

 \\ \rule{220}{2} \\

Similar questions