Physics, asked by nunu9668, 8 months ago

Integration limit 0 to π/2 sinx dx

Answers

Answered by Anonymous
3

Answer:

 \boxed{\mathfrak{ \int \limits_0^{ \dfrac{\pi}{2}}  sinx. dx = 1}}

Explanation:

 \rm Compute  \: the \:  definite \:  integral: \\  \rm \implies  \int \limits_0^{ \dfrac{\pi}{2}}  sinx. dx \\   \\  \rm Apply  \: the  \: fundamental \:  theorem  \: of  \: calculus. \\  \rm The \:  antiderivative \:  of \:  sinx \: is \:  -cosx: \\  \rm \implies  - cosx \Big|_0^ {\dfrac{\pi}{2} } \\  \\  \rm Evaluate  \: the \:  antiderivative  \: at  \: the \:  limits \:  and  \\  \rm subtract. \\  \rm \implies - cos \dfrac{\pi}{2}  - ( - cos0) \\  \\ \rm \implies - cos 90 \degree  - ( - 1)  \\  \\ \rm \implies  - 0 + 1 \\  \\ \rm \implies 1

Similar questions