Hindi, asked by Anonymous, 4 hours ago

integration of 1/1-Sinx .dx

integration of (√x+1/√x)² dx ​

Answers

Answered by AestheticSky
34

 \large \bigstar \underline{ \pmb{ \orange{{ \frak{solution \: 1 : -  }}}}}

  \\  : \implies \displaystyle  \int   \bigg(\sf\dfrac{1}{1 -  \sin x}  \bigg).dx \\

 \\  :  \implies \displaystyle \int  \bigg[\bigg( \sf   \frac{1}{1 -  \sin x}  \bigg)  \times  \bigg( \frac{1 +  \sin x}{1 +  \sin x}  \bigg) \bigg] dx\\

 \\  :  \implies \displaystyle \int \sf  \dfrac{1 +  \sin x}{1 -  { \sin}^{2}x } dx \\

 \\  :  \implies  \displaystyle \int \sf  \frac{1 +  \sin x}{ { \cos}^{2}x } dx \\

 \\   : \implies \displaystyle  \int   \sf  { \sec}^{2} x +  \tan x. \sec x.dx \\

 \\  :  \implies \boxed{ \sf  \tan x +  \sec x + c} \bigstar \\

\large \bigstar \underline{ \pmb{ \orange{{ \frak{solution \: 2: -  }}}}}

 \\   : \implies \displaystyle \int \sf  \bigg(  \sqrt{x}  +  \frac{1}{ \sqrt{x} } \bigg)^{2} dx \\

 \\ :   \implies \displaystyle \int \sf  \bigg(x +  \frac{1}{x}  + 2 \bigg)dx \\

 \\  :  \implies \boxed{ \sf  \frac{ {x}^{2} }{2}  + lnx + 2x + c} \bigstar \\

Similar questions