Math, asked by yogitakumbhar1212, 2 months ago

integration of[1/(1+x^2)^2]dx​

Answers

Answered by allysia
2

Answer:

\dfrac{ x}{2(1 +  {x}^{2}) }  +  \dfrac{1}{2} \tan ^{- 1} x + c

Step-by-step explanation:

Let x = tana

then

dx =  ({ \sec}^{2} a)da

Now,

 \dfrac{1}{({1 +  {x}^{2} )}^{2}  } =   \dfrac{1}{({1 +  { \tan }^{2}a )}^{2}  }

which makes,

\int \:  \dfrac{1}{ { ( { \sec }^{2}a  )}^{2} }  ({ \sec }^{2}a) \: da \\  = \int ({ \cos}^{2}a) da

Cos a can be expressed as: (cos 2a +1)/2

\int   (\dfrac{\cos(2a)  + 1}{2} )da \\  = \int   \dfrac{ \cos(2a) }{2} da + \int   \dfrac{1}{2} da \\  =  \dfrac{ \sin(2a) }{4}  +  \dfrac{1}{2} a + c

Substituting for x = tana here,

\dfrac{ \sin(2\tan ^{- 1} x) }{4}  +  \dfrac{1}{2} \tan ^{- 1} x + c

Using

2\tan ^{- 1} x = \tan ^{- 1}  \dfrac{2x}{1 -  {x}^{2} }

And using the pythogorean triangle for tana here we get

2\tan ^{- 1} x =  \sin ^{- 1} ( \dfrac{2x}{1  +  {x}^{2} } )

Using this in above equation we get the anti derivative as:

\dfrac{ x}{2(1 +  {x}^{2}) }  +  \dfrac{1}{2} \tan ^{- 1} x + c

Similar questions