Math, asked by lokychinni252001, 7 months ago

integration of 1/(2-3x-x^2)​

Answers

Answered by BrainlyPopularman
12

TO FIND :

 \\\bf  \implies\int \dfrac{1}{2 - 3x -  {x}^{2}}.dx  =? \\

SOLUTION :

• Let the integration –

 \\\bf  \implies I = \int \dfrac{1}{2 - 3x -  {x}^{2}}dx\\

 \\\bf  \implies I =  - \int \dfrac{1}{{x}^{2} + 3x - 2}dx\\

 \\\bf  \implies I =  - \int \dfrac{1}{{x}^{2} +2x +x - 2}dx\\

 \\\bf  \implies I =  - \int \dfrac{1}{{x}^{2} + 3x - 2 +  \frac{9}{4} -  \frac{9}{4} }dx\\

 \\\bf  \implies I =  - \int \dfrac{1}{{x}^{2} + 3x  +  \frac{9}{4} - 2 - \frac{9}{4} }dx\\

 \\\bf  \implies I =  - \int \dfrac{1}{ \bigg({x +  \dfrac{3}{2} \bigg)}^{2} - \dfrac{17}{4} }dx\\

 \\\bf  \implies I =   \int \dfrac{1}{  \bigg(\dfrac{ \sqrt{17}}{2} \bigg)^{2}   - \bigg({x +  \dfrac{3}{2} \bigg)}^{2} }dx\\

• Using identity –

 \\\bf  \longrightarrow  \int \dfrac{1}{(a)^{2} - ({x)}^{2} }dx =  \dfrac{1}{2a}  log \bigg |\dfrac{a + x}{a - x} \bigg|  + c\\

• So that –

 \\\bf  \implies I = \dfrac{1}{2\bigg(\dfrac{ \sqrt{17}}{2} \bigg)}  log \left|\dfrac{\bigg(\dfrac{ \sqrt{17}}{2} \bigg) + x + \dfrac{3}{2} }{\bigg(\dfrac{ \sqrt{17}}{2} \bigg) - x - \dfrac{3}{2}} \right|  + c \\

 \\\bf  \implies I = \dfrac{1}{\sqrt{17}}log \left|\dfrac{\dfrac{ \sqrt{17} + 3}{2} + x}{\dfrac{ \sqrt{17} - 3}{2}- x }\right|  + c \\

 \\\bf  \implies I = \dfrac{1}{\sqrt{17}}log \left|\dfrac{\dfrac{ \sqrt{17} +3 +2x}{2} } {\dfrac{ \sqrt{17} - 3 -2x}{2}}\right|  + c \\

 \\\implies {\boxed{ \bf I = \dfrac{1}{\sqrt{17}}log \left|\dfrac{\sqrt{17} + 3 + 2x} {\sqrt{17} -3-2x}\right|  + c}} \\

Answered by Anonymous
107

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{\int \dfrac{1}{2-3x-x^2}dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \dfrac{1}{2-3x-x^2}dx=d\frac{1}{\sqrt{17}}\left(\ln \left|\dfrac{2x+3}{\sqrt{17}}+1\right|-\ln \left|\dfrac{2x+3}{\sqrt{17}}-1\right|\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Complete the square } 2-3 x-x^{2}:-\left(x+\dfrac{3}{2}\right)^{2}+\dfrac{17}{4}

=\int \dfrac{1}{-\left(x+\dfrac{3}{2}\right)^2+\dfrac{17}{4}}dx

\text { Apply u - substitution: } u=x+\dfrac{3}{2}

=\int \dfrac{4}{-4u^2+17}du

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=4\cdot \int \dfrac{1}{-4u^2+17}du

\text { Apply Integral Substitution: } u=\dfrac{\sqrt{17}}{2} v

=4\cdot \int \dfrac{1}{2\sqrt{17}\left(-v^2+1\right)}dv

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=4\cdot \dfrac{1}{2\sqrt{17}}\cdot \int \dfrac{1}{-v^2+1}dv

\mathrm{Use\:the\:common\:integral}:\quad \int \dfrac{1}{-v^2+1}dv=\dfrac{\ln \left|v+1\right|}{2}-\dfrac{\ln \left|v-1\right|}{2}

=4\cdot \dfrac{1}{2\sqrt{17}}\left(\dfrac{\ln \left|v+1\right|}{2}-\dfrac{\ln \left|v-1\right|}{2}\right)

\mathrm{Substitute\:back}

=4\cdot \dfrac{1}{2\sqrt{17}}\left(\dfrac{\ln \left|\dfrac{2}{\sqrt{17}}\left(x+\dfrac{3}{2}\right)+1\right|}{2}-\dfrac{\ln \left|\dfrac{2}{\sqrt{17}}\left(x+\dfrac{3}{2}\right)-1\right|}{2}\right)

\sf{Simplify\:\:4\cdot \dfrac{1}{2\sqrt{17}}\left(\dfrac{\ln \left|\dfrac{2}{\sqrt{17}}\left(x+\dfrac{3}{2}\right)+1\right|}{2}-\dfrac{\ln \left|\dfrac{2}{\sqrt{17}}\left(x+\dfrac{3}{2}\right)-1\right|}{2}\right)}

=\dfrac{1}{\sqrt{17}}\left(\ln \left|\dfrac{2x+3}{\sqrt{17}}+1\right|-\ln \left|\dfrac{2x+3}{\sqrt{17}}-1\right|\right)

\mathrm{Add\:a\:constant\:to\:the\:solution}

\boxed{\sf{=\dfrac{1}{\sqrt{17}}\left(\ln \left|\dfrac{2x+3}{\sqrt{17}}+1\right|-\ln \left|\dfrac{2x+3}{\sqrt{17}}-1\right|\right)+C}}

Similar questions