integration of √ 1/(2x²+3x+4)
Answers
Answered by
0
Let 3x+5=Ad]dx(5+4x−2x2)+B=A(4–4x)+B→A=−34 and B=8
I=∫(3x+5)5+4x−2x2−−−−−−−−−−√dx
=−34(5+4x−2x2)3232+8∫5+4x−2x2−−−−−−−−−−√dx
=−12(5+4x−2x2)32+8I2
For I2,5+4x−2x2=7–2(x−1)2=2(72−(x−1)2)
Let x−1=72−−√sint Then dx=72−−√costdt
5+4x−2x2=7cos2t
I2=∫72√cos2tdt=722√∫(1+cos2t)dt=722√(t+sin2t2)
=722√sin−1(27−−√(x−1))+12(x−1)5+4x−2x2−−−−−−−−−−√
I= −12(5+4x−2x2)32+142–√sin−1(27−−√(x−1))+4(x−1)5+4x−2x2−−−−−−−−−−√+C
I=∫(3x+5)5+4x−2x2−−−−−−−−−−√dx
=−34(5+4x−2x2)3232+8∫5+4x−2x2−−−−−−−−−−√dx
=−12(5+4x−2x2)32+8I2
For I2,5+4x−2x2=7–2(x−1)2=2(72−(x−1)2)
Let x−1=72−−√sint Then dx=72−−√costdt
5+4x−2x2=7cos2t
I2=∫72√cos2tdt=722√∫(1+cos2t)dt=722√(t+sin2t2)
=722√sin−1(27−−√(x−1))+12(x−1)5+4x−2x2−−−−−−−−−−√
I= −12(5+4x−2x2)32+142–√sin−1(27−−√(x−1))+4(x−1)5+4x−2x2−−−−−−−−−−√+C
Answered by
0
I hope it helps
thanks ;D
thanks ;D
Attachments:
abhishek664:
plzz mark as brain list plzzz
Similar questions