Math, asked by wdj23717, 1 month ago

integration of 1/(3sin2x+4cos2x)
note: 1/(3 sin2x+ 4 cos 3x) it is .there is no square​​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{1}{3sin2x \:  +  \: 4cos2x} \: dx

We know, that

\green{ \boxed{ \bf \: sin2x =  \frac{2tanx}{1 +  {tan}^{2}x }}}

and

\green{ \boxed{ \bf \: cos2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x }}}

So, on substituting these Identities, we get

\rm  \:  =  \: \displaystyle\int\sf\:\dfrac{1}{3 \times \dfrac{2tanx}{1 +  {tan}^{2} x}  + 4 \times \dfrac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{1 +  {tan}^{2}x }{6tanx + 4 - 4 {tan}^{2} x} \: dx

\rm  \:  =  \: -  \:\displaystyle\int\sf \: \dfrac{{sec}^{2}x }{ - 6tanx - 4  + 4 {tan}^{2} x} \: dx

\rm  \:  =  \: -  \:\displaystyle\int\sf \: \dfrac{{sec}^{2}x }{4 {tan}^{2} x - 6tanx - 4} \: dx

 \red{\rm :\longmapsto\:Put \: tanx = y} \\  \red{\rm :\longmapsto\: {sec}^{2}xdx = dy}

\rm  \:  =  \: \: -  \: \displaystyle\int\sf \: \dfrac{dy}{4 {y}^{2}  - 6y - 4}

\rm  \:  =  \: \: -  \dfrac{1}{2}  \: \displaystyle\int\sf \: \dfrac{dy}{2 {y}^{2}  - 3y - 2}

\rm  \:  =  \: \: -  \dfrac{1}{2}  \: \displaystyle\int\sf \: \dfrac{dy}{2 {y}^{2}  - 4y  + y- 2}

\rm  \:  =  \: \: -  \dfrac{1}{2}  \: \displaystyle\int\sf \: \dfrac{dy}{2y(y - 2) +1( y- 2)}

\rm  \:  =  \: \: -  \dfrac{1}{2}  \: \displaystyle\int\sf \: \dfrac{dy}{(2y + 1)(y - 2)}

\rm  \:  =  \: \: -  \dfrac{1}{10}  \: \displaystyle\int\sf \: \dfrac{5}{(2y + 1)(y - 2)} dy

\rm  \:  =  \: \: -  \dfrac{1}{10}  \: \displaystyle\int\sf \: \dfrac{4 + 1}{(2y + 1)(y - 2)} dy

\rm  \:  =  \: \: -  \dfrac{1}{10}  \: \displaystyle\int\sf \: \dfrac{4 + 1 + 2y - 2y}{(2y + 1)(y - 2)} dy

\rm  \:  =  \: \: -  \dfrac{1}{10}  \: \displaystyle\int\sf \: \dfrac{(2y + 1) - 2(y - 2)}{(2y + 1)(y - 2)} dy

\rm  \:  =  \: \: -  \dfrac{1}{10}  \: \displaystyle\int\sf \: \bigg(\dfrac{1}{y  - 2}  - \dfrac{2}{2y + 1} \bigg) dy

\rm  \:  =  \: \: - \dfrac{1}{10}\bigg( log(y - 2)  -  log(2y  + 1) \bigg)  + c

\rm  \:  =  \: \: - \dfrac{1}{10}\bigg( log(tanx - 2)  -  log(2tanx  + 1) \bigg)  + c

Formula used :-

\green{ \boxed{ \bf \: \displaystyle\int\sf \:  \frac{1}{x}dx =  log(x) + c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \:  \frac{1}{ax + b} \: dx =   \frac{1}{a} \:  log(ax + b) + c}}

Additional Information :-

\green{ \boxed{ \bf \: \displaystyle\int\sf \: k \: dx = kx \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: sinx \: dx =  -  \: cosx \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: cosx \: dx =   \: sinx \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: cosecx \: cotx \: dx =   \:  -  \: cosecx \: \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: secx \: tanx \: dx =    \: secx \: \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: secx\: dx =    \: log(secx + tanx) \: \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: cosecx\: dx =    \: log(cosecx  - cotx) \: \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \:  {sec}^{2}x = tanx \:  +  \: c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \:  {cosec}^{2}x = -  \:  cotx \:  +  \: c}}

Similar questions