Math, asked by aoumau93811, 1 year ago

integration of 1/√(3x^2+5x+7)

Answers

Answered by Raghuroxx
15

Step-by-step explanation:

I HOPE IT WILL BE HELPFUL FOR U!!

PLZ MAKE ME AS BRAINLIEST!!!

Attachments:
Answered by madeducators4
3

Given :

A function f(x) is which is given as :

f(x)=\frac{1}{\sqrt{3x^{2}+5x+7 } }

To Find :

What is the integration of the given function f (x) i.e. :

\int f(x).dx =?

Solution :

Let I be the integration of the function f (x) ,then I will be :

I=\int f(x).dx

Taking √3 common from the denominator term we get :

I=\frac{1}{\sqrt{3} } \int\frac{dx}{\sqrt{x^{2}+5x\frac{1}{3} +\frac{7}{3}  } }

Now we are adding and subtracting square of \frac{5}{6} in the denominator term trying to make a perfect square ,so :

I=\frac{1}{\sqrt{3} }\int\frac{dx}{\sqrt{x^{2}+2\times \frac{5}{6}x+(\frac{5}{6}) ^{2}-(\frac{5}{6}) ^{2}  +\frac{7}{3}   } }

I=\frac{1}{\sqrt{3} }\int\frac{dx}{\sqrt{(x+\frac{5}{6}) ^{2}+\frac{59}{36}  } }

Now we will use here the appropriate integration formula here which is :

\frac{dx}{\sqrt{x^2 + a^2} }= \log|x + \sqrt{x^2 + a^2} |

On using this formula we can write :

I=\frac{1}{\sqrt{3} } \log[(x+\frac{5}{6})+\sqrt{(x+\frac{5}{6}) ^{2}+\frac{59}{36}  }]

I=\frac{1}{\sqrt{3} } \log[(x +\frac{5}{6} )+\sqrt{x^{2}+\frac{5}{3}x+\frac{7}{3}   }]+c

So, the integration of  given function f (x) is I=\frac{1}{\sqrt{3} } \log[(x +\frac{5}{6} )+\sqrt{x^{2}+\frac{5}{3}x+\frac{7}{3}   }]+c

Similar questions