Math, asked by hatgaonkarpooja, 1 month ago

integration of 1/ 4x^2 - 3x - 1 ​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{1}{4 {x}^{2}  - 3x - 1} dx \\

  =  \int \frac{1}{4  \bigg\{ {x}^{2}  -  \dfrac{3x}{4} -  \dfrac{1}{4} \bigg \}} dx \\

  =   \frac{1}{4} \int \frac{1}{  {x}^{2}  -  \dfrac{3x}{4} -  \dfrac{1}{4} } dx \\

  =   \frac{1}{4} \int \frac{1}{  {x}^{2}  - 2. \dfrac{3}{8}.x +  \dfrac{9}{64}   -  \dfrac{9}{64} -  \dfrac{1}{4} } dx \\

  =   \frac{1}{4} \int \frac{1}{  {x}^{2}  - 2. \dfrac{3}{8}.x +   \bigg(\dfrac{3}{8} \bigg)^{2}   -  \dfrac{9 +16}{64} } dx \\

  =   \frac{1}{4} \int \frac{1}{    \bigg(x - \dfrac{3}{8} \bigg)^{2}   -  \dfrac{25}{64} } dx \\

  =   \frac{1}{4} \int \frac{1}{    \bigg(x - \dfrac{3}{8} \bigg)^{2}   -   \bigg(\dfrac{5}{8} \bigg)^{2}  } dx \\

 =  \frac{1}{4} . \frac{8}{2 \times 5} \ln   \left| \begin{array}{} \frac{ \large{x} -  \dfrac{3}{8} -  \dfrac{5}{8}  }{ \large{x }-  \dfrac{3}{8} +  \dfrac{5}{8}  }   \end{array} \right| + C  \\

 =  \frac{1}{5}  \ln   \bigg| \frac{ x -  1  }{ x +  \dfrac{1}{4}  }    \bigg| + C  \\

 =  \frac{1}{5}  \ln   \bigg| \frac{4 x -  4  }{ 4x +  1  }    \bigg| + C  \\

Similar questions