Math, asked by ajitupadhyay666, 1 year ago

integration of 1/9x'2+49 dx​

Answers

Answered by shadowsabers03
5

Question:-

Evaluate \displaystyle\sf{\int\dfrac{1}{9x^2+49}\ dx.}

Answer:-

\displaystyle\Large\boxed{\sf{\int\dfrac{1}{9x^2+49}\ dx=\dfrac{1}{21}\tan^{-1}\left(\dfrac{3}{7}\ x\right)+c}}

Solution:-

Given,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx}

Our aim is to get the integral to the form \displaystyle\sf{k\int \dfrac{1}{u^2+1}\ du} for a constant k and u is a function in x, because we know that,

\displaystyle\longrightarrow\sf{\int \dfrac{1}{u^2+1}\ du=\tan^{-1}(u)+c.}

Let,

\displaystyle\longrightarrow\sf{u=ax\quad\iff\quad x=\dfrac{u}{a}}

\displaystyle\longrightarrow\sf{dx=\dfrac{1}{a}\ du}

where 'a' is a constant. Then,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\int\dfrac{1}{9\left(\dfrac{u}{a}\right)^2+49}\cdot\dfrac{1}{a}\ du}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\dfrac{1}{a}\int\dfrac{a^2}{9u^2+49a^2}\ du}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\int\dfrac{a}{9\left(u^2+\dfrac{49a^2}{9}\right)}\ du}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\dfrac{a}{9}\int\dfrac{1}{u^2+\dfrac{49a^2}{9}}\ du}

Comparing the RHS with \displaystyle\sf{k\int\dfrac{1}{u^2+1}\ du,} we get,

\displaystyle\longrightarrow\sf{\dfrac{49a^2}{9}=1}

\displaystyle\longrightarrow\sf{a=\pm\dfrac{3}{7}}

And,

\displaystyle\longrightarrow\sf{k=\dfrac{a}{9}=\pm\dfrac{1}{21}}

\displaystyle\longrightarrow\sf{u=\pm\dfrac{3}{7}\ x}

Then,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\pm\dfrac{1}{21}\int\dfrac{1}{u^2+1}\ du}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\pm\dfrac{1}{21}\tan^{-1}(u)+c}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{9x^2+49}\ dx=\pm\dfrac{1}{21}\tan^{-1}\left(\pm\dfrac{3}{7}\ x\right)+c}

\displaystyle\longrightarrow\sf{\underline{\underline{\int\dfrac{1}{9x^2+49}\ dx=\dfrac{1}{21}\tan^{-1}\left(\dfrac{3}{7}\ x\right)+c}}}

Answered by Swarup1998
3

Before solving this problem, let us know a formula:

\displaystyle\mathrm{\quad \int \frac{dx}{a^{2}+x^{2}}=\frac{1}{a}\:tan^{-1}\big(\frac{x}{a}\big)+c}

where c is constant of integration.

Now we proceed to solve the problem:

\displaystyle\therefore \mathrm{\int\frac{dx}{9x^{2}+49}}

\displaystyle\mathrm{=\int \dfrac{dx}{(3x)^{2}+7^{2}}}

Let \displaystyle\mathrm{3x=z\implies dx=\frac{1}{3}\:dz}

Then we have \displaystyle\to

\displaystyle\mathrm{=\frac{1}{3} \int \frac{dz}{z^{2}+7^{2}}}

\displaystyle\mathrm{=\frac{1}{3} \times \frac{1}{7}\:tan^{-1}\big(\frac{z}{7}\big)+c}

\quad where c is constant of integration

\displaystyle\mathrm{=\frac{1}{21}\:tan^{-1}\big(\frac{3x}{7}\big)+c}

\quad\quad since \displaystyle\mathrm{z=3x}

\displaystyle\to \boxed{\mathrm{\int\dfrac{dx}{9x^{2}+49}=\frac{1}{21}\:tan^{-1}\big(\frac{3x}{7}\big)+c}}

Related problems :

Q1. integrate x power 15 by 1 + x power 32

https://brainly.in/question/15902978

Q2. solve this problem integration limit is 0 to 12 : (2x)dx-1

https://brainly.in/question/15953283

Similar questions