Math, asked by 143Akon, 8 months ago

integration of 1 by 1 + x square + x​

Answers

Answered by shadowsabers03
6

Given to find,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx}

By factorising the denominator \sf{x^2+x+1} we get complex roots so let,

\displaystyle\longrightarrow\sf{\dfrac{1}{x^2+x+1}\ dx=\dfrac{k}{u^2+1}\ du}

where \sf{k} is a constant and \sf{u} is a function in \sf{x,} because we have to bring the integral as,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\int\dfrac{k}{u^2+1}\ du\quad\quad\dots(1)}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=k\tan^{-1}(u)+c\quad\quad\dots(2)}

So,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\int\dfrac{1}{x^2+x+\dfrac{1}{4}+\dfrac{3}{4}}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\int\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ dx}

Multiplying \sf{\dfrac{4}{3}} on both the numerator and the denominator,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\int\dfrac{\dfrac{4}{3}}{\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\dfrac{4}{3}}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{4}{3}\int\dfrac{1}{\left[\left(x+\dfrac{1}{2}\right)\dfrac{2}{\sqrt3}\right]^2+1}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{4}{3}\int\dfrac{1}{\left(\dfrac{2x}{\sqrt3}+\dfrac{1}{\sqrt3}\right)^2+1}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{4}{3}\int\dfrac{1}{\left(\dfrac{2x+1}{\sqrt3}\right)^2+1}\ dx\quad\quad\dots(3)}

Comparing the denominator with \sf{u^2+1} then we get,

\displaystyle\longrightarrow\sf{u=\dfrac{2x+1}{\sqrt3}}

\displaystyle\longrightarrow\sf{\dfrac{du}{dx}=\dfrac{2}{\sqrt3}}

\displaystyle\longrightarrow\sf{dx=\dfrac{\sqrt3}{2}\ du}

Then (3) becomes,

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{4}{3}\int\dfrac{1}{u^2+1}\cdot\dfrac{\sqrt3}{2}\ du}

\displaystyle\longrightarrow\sf{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{2}{\sqrt3}\int\dfrac{1}{u^2+1}\ du\quad\quad\dots(4)}

From (1) and (4) we get,

\displaystyle\longrightarrow\sf{k=\dfrac{2}{\sqrt3}}

Hence (2) becomes,

\displaystyle\longrightarrow\sf{\underline{\underline{\int\dfrac{1}{x^2+x+1}\ dx=\dfrac{2}{\sqrt3}\tan^{-1}\left(\dfrac{2x+1}{\sqrt3}\right)+c}}}

Similar questions