Math, asked by ajitupadhyay666, 11 months ago

integration of √1-cos2x​

Answers

Answered by Sharad001
61

Answer :-

\implies \boxed{ \sf{  \sqrt{2} ( -  \cos x) +  \: c \: (constant)}} \:

Explanation :-

  \implies \sf{ \int \:  \sqrt{1 -  \cos2x}  \: dx \: } \\

We know that ;

 \leadsto \boxed{ \:  \sf{  \cos2 \theta = 1 - 2 {\sin}^{2}  \theta \: }} \\  \\  \therefore \:  \\  \\  \implies \sf{  \int \:  \sqrt{1 - (1 - 2 { \sin}^{2}x) }  \: dx} \\  \\  \implies   \int \sf{  \sqrt{1 - 1 + 2 { \sin}^{2}x }  \: dx }\:  \\  \\  \implies \sf{  \int \:  \sqrt{2}  \:  \times  \sqrt{  { \sin}^{2} x}  \: dx \: } \\    \\  \implies \sf{ \sqrt{2}  \int \:  \sin x \:  \: dx \: } \\

 \because \boxed{ \sf{ \int \sin x \:  \: dx =  -  \cos \: x \:  + c \: }} \\  \\  \therefore \:  \:  \\  \implies \sf{   \sqrt{2} \int \sin x \:  \: dx \: } \\  \\  \implies \boxed{ \sf{  \sqrt{2} ( -  \cos x) +  \: c \: (constant)}}

Answered by amitkumar44481
51

AnsWer :

 \tt  -\sqrt{2}  \cos  x + c.

Solution :

We have,

  \implies\tt \int \sqrt{1 -  \cos  2x \: dx }  \\

  \therefore \: \tt1 -  \cos \: 2x = 2 {\sin }^{2} x

 \implies  \tt\int \sqrt{2 { \sin \:  }^{2}x \: dx }  \\

\implies  \tt\int \sqrt{2} . \sqrt{  { \sin }^{2}  x \: dx}  \\

 \therefore \:  \tt here \:  \sqrt{2}  \: is \: constant , \: take \: common.

\implies  \tt \sqrt{2} \int \sqrt{ { \sin}^{2} x \: dx}  \\

\implies  \tt \sqrt{2} \int  \sin  x \: dx  \\

\implies  \tt \sqrt{2} ( -  \cos x) + c \\

\implies  \tt  - \sqrt{2} \cos x + c. \\

Therefore, the value of integration √ 1- cos 2x dx is -√2 cos x +c.

\rule{200}3

\boxed{\begin{minipage}{7 cm} Identities \\ \\$ \cos2x = \cos^2x-\sin^2x\\ \\ \cos2x = 1-2\sin^2x \\ \\ \cos2x = 2\cos^2x-1 \\ \\ 1-\cos2x = 2\sin^2x$\end{minipage}}

Similar questions