Math, asked by sai123456789, 1 year ago

Integration of 1÷(root of x^2+a^2)= log|x+root of x^2+a^2|÷|a|

how is it possible?


sai123456789: yes bro thanks

Answers

Answered by ajeshrai
4
you can see your answer
Attachments:
Answered by shashankavsthi
7
here is your answer-

first of all take x=atanθ

now,

∫ \frac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } } dx \\  \\ x = atanθ \\ dx =  {sec}^{2} θ \: dθ \\  \\ now \: put \: dx \: as \: given \: above \\ ∫  \frac{1}{ \sqrt{ ( {atanθ)}^{2}   + {a}^{2}  } }  {sec}^{2} θ \: dθ \\ ∫ \frac{ {sec}^{2} θ dθ\: }{ \sqrt{1 +  {tan}^{2} θ} }  \frac{1}{a}  \\  \\  \frac{1}{a} ∫   \frac{ {sec}^{2}θ }{secθ}  \: dθ \\   \frac{1}{a} ∫ secθdθ \\  \\  \frac{1}{a}  ln( \sec(θ)  + tanθ)  -  -  - (1)\\ put \: value \: of \: tanθ \\  \\ tanθ =  \frac{x}{a}  \\ secθ =  \frac{ \sqrt{ {a}^{2}  +  {x}^{2} } }{a} (use \: formula \:  {sec}^{2} x = 1 +  {tan}^{2} x) \\  \\ put \: value \: of \: secθ \: and \: tanθ \: in \: eq.1 \: \\ get \: your \: answer.



DeeptiMohanty: woooow ......nice
shashankavsthi: thnkss!!
Similar questions