integration of 1/sin2x
Answers
Answered by
3
integration of 1/sin2x dx
f(x) dx = cosec 2x dx
= 1/2 * cosec 2x d(2x)
∫ f(x) dx = - 1/2 * Ln | Cosec2x + Cot 2x| + K
as we know the standard formula for integration of Cosec x dx
f(x) dx = cosec 2x dx
= 1/2 * cosec 2x d(2x)
∫ f(x) dx = - 1/2 * Ln | Cosec2x + Cot 2x| + K
as we know the standard formula for integration of Cosec x dx
kvnmurty:
:-)
Answered by
2
I = ∫dx/sin2x
we know,
sin2x = 2sinx.cosx
I = ∫dx/2sinx.cosx
= 1/2 ∫1.dx/sinx.cosx
now, put 1 = sin²x + cos²x
I =1/2 ∫(sin²x + cos²x)dx/sinx.cosx
=1/2[ ∫tanx.dx + ∫cotx.dx ]
= 1/2[ ln|secx| + ln|sinx|] + C
we know,
sin2x = 2sinx.cosx
I = ∫dx/2sinx.cosx
= 1/2 ∫1.dx/sinx.cosx
now, put 1 = sin²x + cos²x
I =1/2 ∫(sin²x + cos²x)dx/sinx.cosx
=1/2[ ∫tanx.dx + ∫cotx.dx ]
= 1/2[ ln|secx| + ln|sinx|] + C
Similar questions