Math, asked by sudeepagoud, 11 months ago

integration of 1-sinx/1+sinx dx​

Answers

Answered by lachukutty001
3

Answer:

integral:= 2 tan x- 2 sec x- x + c

Step-by-step explanation:

\frac{1-sin x}{1+sinx} * \frac{1-sin x}{1-sin x} =\frac{(1-sinx)^{2} }{1-sin^{2} x } \\ \\

=\frac{1-2 sin x + sin^{2} x}{cos^{2}  x} =\frac{1-2 sin x+1- cos^{2} x }{cos^{2} x } \\ \\=\frac{2}{cos^{2} x } - \frac{2sin x}{cos^{2} x } - \frac{cos^{2} x}{cos^{2} x } \\ \\  = 2sec^{2}  x - 2 tan x sec x-1

\int {\frac{1- sin x}{1+ sinx} } \, dx =\int {2 sec^{2} x -2 sec x tan x-1 } \, dx \\ \\= 2 tan x-2 sec x-x+c

Similar questions