Math, asked by praveen368, 10 months ago

integration of 1/sinx cosx​

Answers

Answered by kaushik05
24

  \huge \boxed{  \red{\mathfrak{solution}}}

To find :

 \boxed{  \bold{\int \:  \frac{1}{ sinx  \: cosx} dx }}

In place of 1 we write

  \boxed{ \bold{{sin}^{2} x +  {cos}^{2} x = 1}}

 \leadsto \int \frac{ {sin}^{2}x +  {cos}^{2} x }{sinx \: cosx}dx  \\  \\  \leadsto \:  \int  \frac{  {sin}^{2}x  }{sinx \: cosx} dx +  \int \:  \frac{ {cos}^{2}x }{sinx \: cosx} dx \\  \\ \leadsto \:   \int \:  \cancel \frac{ {sin}^{2}x }{sinx \:  \:  \: cosx} dx +  \int \cancel  \frac{ {cos}^{2}x }{cosx \:  \:  sinx} dx \\  \\  \leadsto  \int \:  \frac{sinx}{cosx} dx +  \int \:  \frac{cosx}{sinx} dx \\  \\  \leadsto \int \: tanx \: dx +  \int \: cot \: dx \\  \\  \leadsto \:  log( secx)  +  log(sinx  )  + c  \:

Formula used :

  \boxed{    \green{\bold{\int \: cot \: dx =  log(sinx)  + c}}}

 \boxed{ \purple{\bold{\int \: tanx \: dx = log(secx)   + c}}}

Answered by Sharad001
104

Question :-

Integrate it ,

 \large \int \sf{ \frac{1}{ \sin  x \cos } dx} \\

Answer :-

 \large \boxed{\int \sf{ \frac{1}{ \sin  x \cos } dx}  =  log( \tan x)  + c}

Formula used :-

 \star \: \sf{ \frac{1}{ \cos x}  =  \sec x} \\  \\  \star \:  \frac{ \sin x}{ \cos x} \:  =  \tan x

Explanation :-

We have ,

 \rightarrow \large \int \sf{ \frac{1}{ \sin  x \cos } dx} \\  \\ \large \mathfrak{we \: can \: write \: it} \\  \\  \rightarrow \large \int \sf{ \frac{1}{ \sin  x \cos  \times  \frac{ \cos x}{ \cos x} } dx} \\  \:  \\  \\  \rightarrow \large \int \sf{  \frac{1}{ \frac{ \sin x}{ \cos x} \times  { \cos}^{2} x } dx} \\  \\  \rightarrow \large  \int \sf{ \frac{1}{ \tan x \:  \:  { \cos}^{2} x} dx} \\  \\  \rightarrow \large  \int \:  \sf{ \frac{ { \sec}^{2} x}{ \tan x} dx} \\  \\  \sf{let \:  \tan x = t \: ....(1)} \\  \\  \mathfrak{differentiate \: with \: respect \: to \: } \sf{x} \\  \\  \implies \large \sf{ { \sec}^{2} x \: dx = dt} \\  \\  \rightarrow \large \int \sf{ \frac{1}{t} dt} \\  \\  \because \sf{ \int \large  \frac{1}{x} dx =  log(x)  + c} \\  \\  \therefore \\  \rightarrow \large \sf{ log(t)  + c} \\  \\ \sf{ from \: (1)} \\  \\  \rightarrow \large \sf{ log( \tan  x)  + c}

\__________________/

#answerwithquality

#BAL

Similar questions