Math, asked by mannatkaur3112, 9 months ago

integration of 1/sqrt(-2x^2+3x+1)​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given te integrate

 \frac{1}{ \sqrt{ - 2 {x}^{2}  + 3x  + 1} }

We have,

 \int \frac{dx}{ \sqrt{ - 2 {x}^{2} + 3x + 1 } }

 =  \frac{1}{ \sqrt{2} }  \int \frac{dx}{  \sqrt{ -  ({x}^{2}  -   \frac{3}{2}x  -   \frac{1}{2} )  }  }

 =  \frac{1}{ \sqrt{2} }  \int \frac{dx}{  \sqrt{ - ( {x}^{2} -  \frac{3}{2}x +  { (\frac{3}{4} )}^{2} - { (\frac{3}{4}) }^{2}  -  \frac{1}{2}     })  }

 =  \frac{1}{ \sqrt{2} }  \int \frac{dx}{ \sqrt{ - ((x -  \frac{3}{4} )^{2}  -  \frac{1}{16} )} }

 =  \frac{1}{ \sqrt{2} }  \int \frac{dx}{ \sqrt{ { (\frac{1}{4} )}^{2}  - (x -  \frac{3}{4} )^{2} } }

 =  \frac{1}{ \sqrt{2} } .  \sin ^{ - 1} ( \frac{x -  \frac{3}{4} }{ \frac{1}{4} } )   + c

 =  \frac{1}{ \sqrt{2} } \sin^{ - 1} (4x - 3) + c

Similar questions