Math, asked by sneha1827, 3 months ago

Integration of -1 to 1 (x^2/1 +e^x) dx

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2} }{1 +  {e}^{x} } \: dx

Let assume that

\rm :\longmapsto\: I \:  =  \:  \displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2} }{1 +  {e}^{x} } \: dx \:  -  -  - (1)

We know that,

\boxed{ \sf{ \:\displaystyle\int_{a}^b \rm f(x)dx = \displaystyle\int_{a}^b \rm f(a + b - x)dx}}

Change x to - x, we get

\rm :\longmapsto\: I \:  =  \:  \displaystyle\int_{-1}^1 \rm  \frac{ {( - x)}^{2} }{1 +  {e}^{ - x} } \: dx \:

\rm :\longmapsto\: I \:  =  \:  \displaystyle\int_{-1}^1 \rm  \frac{ { x}^{2} }{1 +  \dfrac{1}{ {e}^{x} } } \: dx \:

\rm :\longmapsto\: I \:  =  \:  \displaystyle\int_{-1}^1 \rm  \frac{ { x}^{2} }{\dfrac{ {e}^{x}  + 1}{ {e}^{x} } } \: dx \:

\rm :\longmapsto\: I \:  =  \:  \displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2}  {e}^{x} }{1 +  {e}^{x} } \: dx \:  -  -  - (2)

Adding equation (1) and (2), we get

\rm :\longmapsto\: 2I \:  = \:  \displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2}}{1 +  {e}^{x} } \: dx  +  \:  \displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2}  {e}^{x} }{1 +  {e}^{x} } \: dx

\rm :\longmapsto\: 2I \:  = \:  \displaystyle\int_{-1}^1 \rm  \frac{ {x}^{2}(1 +{e}^{x}) }{1 +  {e}^{x} } \: dx

\rm :\longmapsto\: 2I \:  = \:  \displaystyle\int_{-1}^1 \rm {x}^{2}  \: dx

\rm :\longmapsto\: 2I \:  = \:  \bigg(\dfrac{ {x}^{2 + 1} }{2 + 1} \bigg) _{-1}^1

\rm :\longmapsto\: 2I \:  = \:  \bigg(\dfrac{ {x}^{3} }{3} \bigg) _{-1}^1

\rm :\longmapsto\: 2I \:  = \:  \dfrac{ {1} }{3}( {1}^{3}  -  {( - 1)}^{3} )

\rm :\longmapsto\: 2I \:  = \:  \dfrac{ {1} }{3}(1 - ( - 1))

\rm :\longmapsto\: 2I \:  = \:  \dfrac{ {1} }{3}(1 + 1)

\rm :\longmapsto\: 2I \:  = \:  \dfrac{ {1} }{3}(2)

\bf :\longmapsto\: I \:  = \:  \dfrac{ {1} }{3}

Additional Information :-

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \: \displaystyle\int_{a}^b \rm f(y)dy}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \:  -  \: \displaystyle\int_{b}^a \rm f(x)dx}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^a \rm f(x)dx \:  =  \: \displaystyle\int_{0}^a \rm f(a - x)dx}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - a}^a \rm f(x)dx \:  =2  \: \displaystyle\int_{0}^a \rm f(x)dx \:  \: if \: f( - x) = f(x)}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - a}^a \rm f(x)dx \:  =0 \:  \: if \: f( - x) =  -  \: f(x)}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^{2a} \rm f(x)dx \:  =2  \: \displaystyle\int_{0}^a \rm f(x)dx \:  \: if \: f(2a - x) = f(x)}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^{2a} \rm f(x)dx \:  =0 \:  \: if \: f(2a - x) =  -  \: f(x)}}}

Similar questions