integration of 1+v/2+2v-v² dv
Answers
Answered by
0
Answer:
Verified by Toppr
∫
v
2
+2v+1
v
2
dv
⇒∫
v
2
+2v+1
v
2
+(2v+1)−(2v+1)
dv
⇒∫
v
2
+2v+1
(v
2
+2v+1)−(2v+1)
dv=∫dv−∫
v
2
+2v+1
2v+1
dv
⇒v−∫
v
2
+2v+1
2v+1+(1−1)
dv
⇒v−∫
v
2
+2v+1
2v+2−1)
dv
⇒v−[∫
v
2
+2v+1
2v+2dv
−∫
v
2
+2v+1
dv
]
⇒v−[∫
v
2
+2v+1
(2v+2)dv
−∫
v
2
+2v+1
dv
]
Let v
2
+2v+1=t
(2v+2)dv =dt
⇒v−[∫
t
dt
−∫
(v+1)
2
dv
]
⇒v−ln∣t∣ +
v+1
−1
+c
⇒v−ln
∣
∣
∣
v
2
+2v+1
∣
∣
∣
-
v+1
1
+c
Similar questions