Math, asked by sahilpathan1239, 11 months ago

integration of 1/x^2+3x+7​

Answers

Answered by Anonymous
2

Answer:

\large\bold\red{\frac{2}{ \sqrt{19} }   \:   { \tan }^{ - 1}  (\frac{2x + 3}{ \sqrt{19} })  + c}

Step-by-step explanation:

Given,

We have to integrate ,

  \large{\int \frac{1}{ {x}^{2}  + 3x + 7} dx}

Further simplifying,

We get,

 = \int \frac{1}{ {(x)}^{2}  + (2  \times  \frac{3}{2}  \times x)  +  {( \frac{3}{2} )}^{2}  + 7 -  {( \frac{3}{2} )}^{2} }dx  \\  \\  = \int \frac{1}{ {(x +  \frac{3}{2} )}^{2}  + 7 -  \frac{9}{4} }  dx\\  \\  = \int \frac{1}{ {(x +  \frac{3}{2} )}^{2}  +  \frac{28 - 9}{4} } dx \\  \\  = \int \frac{1}{ {(x +  \frac{3}{2}) }^{2} +  \frac{19}{4}  }  dx\\  \\  = \int \frac{1}{  {(x +  \frac{3}{2} )}^{2}  +  {( \frac{ \sqrt{19} }{2} )}^{2} } dx

Now,

Let's assume that,

x +  \frac{3}{2}  = t

Differentiating both the sides,

We get,

 =  > dx = dt

Substituting the values,

We get,

 = \int \frac{1}{ {t}^{2}  +  {( \frac{ \sqrt{19} }{2} )}^{2} } dt \\  \\  =  \frac{1}{ \frac{ \sqrt{19} }{2} }  \:  { \tan }^{ - 1}  (\frac{t}{ \frac{ \sqrt{19} }{2} }  ) + c \\  \\  =  \frac{2}{ \sqrt{19} }  \:  { \tan}^{ - 1} ( \frac{2t}{ \sqrt{19} } ) + c

Substituting the value of 't',

We get,

 =  \frac{2}{ \sqrt{19} }  \:  { \tan}^{ - 1} ( \frac{2(x +  \frac{3}{2} )}{ \sqrt{19} } ) + c \\  \\  =   \large \boxed{ \bold{\frac{2}{ \sqrt{19} }   \:   { \tan }^{ - 1}  (\frac{2x + 3}{ \sqrt{19} })  + c}}

Answered by RvChaudharY50
49

Question we have to Find :---- integration of 1/(x^2+3x+7)

First we solve denominator by splitting the middle term ..

 {x}^{2}  + 3x + 7 \\  \\ here \: 3x = 2ab \\ where \: a = x \\  \\ so \: 2xb = 3x \\ b =  \frac{3}{2}  \\  \\ now \: adding \: and \: subtracting( \frac{3}{2} )^{2} we \: get \\  \\  {x}^{2}  + 3x + 7 + (\frac{3}{2} )^{2} - (\frac{3}{2} )^{2} \:  \\  \\  {x}^{2}  + 3x + (\frac{3}{2} )^{2} + 7 - (\frac{3}{2} )^{2} \\  \\ (x +  \frac{3}{2} )^{2}  + (7 -  \frac{9}{4} ) \\  \\ (x +  \frac{3}{2} )^{2} +  \frac{19}{4}  \\  \\ (x +  \frac{3}{2} )^{2} + ( \frac{ \sqrt{19} }{2} )^{2}

Now see solution in image .....

Attachments:
Similar questions